Nothing
#######################################################################
###
### Main fitting function for mModels
###
### 1) Creates initical values
### 2) Finds sufficient statistics
### 3) Calls .mModel_iterate
###
#######################################################################
#' @export
fit.mModel <- function(object, method="general", details=0, eps.parm=1e-10, maxit=100, ...){
method <- match.arg(method, c("general", "stephalving"))
## cat("fit.mModel - entry\n")
##cg <- object$datainfo$CGstats ##; str(cg)
cg <- getmi(object, "cgstats")
ans <- .fitmModel(object, method=method, details=details, eps.parm=eps.parm, maxit=maxit, ...)
ans$dimension <- .mmod_dimension(object$modelinfo$dlq, object$datainfo)
## Saturated model
n.obs <- cg$n.obs
NN <- cg$N
qq <- length(cg$cont.names)
SS <- cg$SSD / NN
logL.sat <- sum(n.obs * log(n.obs/NN)) - NN * qq/2 * log(2*pi) - NN/2 * log(det(SS)) - NN * qq/2
## Independence model
i.model <- loglin(n.obs, as.list(seq_along(dim(n.obs))),iter=1, print=FALSE, fit=TRUE)
grand.mean <- rowSumsPrim(colwiseProd(n.obs/NN, cg$center))
SS.ind <- (cg$SS - NN*grand.mean %*% t(grand.mean))/NN
logL.ind <- sum(n.obs * log(i.model$fit / NN))- NN * qq / 2 * log(2 * pi) - NN / 2 * sum(log(diag(SS.ind))) - NN * qq / 2
ans$ideviance <- ans$logL - logL.ind
ans$dev <- logL.sat - ans$logL
ans$aic <- -2 * ans$logL + 2 * ans$dimension['mod.dim']
ans$bic <- -2 * ans$logL + log(nrow(getmi(object, "data"))) * ans$dimension['mod.dim']
object$fitinfo <- ans
object$isFitted <- TRUE
return(object)
}
## #' export
## print.MIfit <- function(x,...){
## ##cat("MIfit:\n")
## cat(sprintf("components: %s \n", toString(names(x))))
## print(x[c("parms","logL","init.logL","dimension")])
## return(invisible(x))
## }
.fitmModel <- function(object, method="general", details=0, eps.parm=1e-10, eps.logL=1e-10, maxit=100, ...){
## cat(".fitmModel\n")
### Generate initial parameter value
###
.infoPrint(details,1, "fit.mModel: Creating initial values\n")
Mparms <- .CGstats2initpms(getmi(object, "cgstats"))
Cparms <- parm_pms2ghk(Mparms)
### Generator lists
###
Ad.list <- object$modelinfo$glist.num.disc
Ac.list <- object$modelinfo$glist.num.cont
### Find weak marginal model for each generator
###
##str(list(Ad.list=Ad.list, Ac.list=Ac.list))
WMDghk <- weak_marginal_data_list(getmi(object, "cgstats"),
Ad.list, Ac.list, type="ghk", details=details)
## The new version of ghk2pmsParms_ is really a timesaver here
WMDpms <- lapply(WMDghk, parm_ghk2pms_)
### Iterate to maximize logL
###
.infoPrint(details, 2, "fit.mModel: Calling .mModel_iterate\n")
ans <- .mModel_iterate(Mparms, Cparms, Ad.list, Ac.list,
WMDghk, WMDpms, getmi(object, "cgstats"),
method, eps.parm, eps.logL, maxit, details)
ans$WMDghk <- WMDghk
ans$init.parms <- Mparms
class(ans) <- "MIfit"
ans
}
########################################################################
###
### Iteration:
### Repeatedly
### 1) calls .outerloop and
### 2) checks if logL has increased
###
########################################################################
## .logLdiff <- function(curr, prev){
## (curr - prev) / -prev
## }
.mModel_iterate <- function(Mparms, Cparms, Ad.list, Ac.list,
WMDghk, WMDpms, CGstats,
method,
eps.parm=1.0e-4, eps.logL=1e-6, maxit=100, details=1){
prev.Mparms <- Mparms
init.logL <- prev.logL <- .mModel_logLpms(CGstats, Mparms)
.infoPrint(details, 3, cat(sprintf("Initial logL %f\n", init.logL)))
itcount <- 1
scale <- 1
if (maxit > 0){
repeat {
zzz <- .outerloop(Mparms, Cparms, Ad.list, Ac.list,
WMDghk, WMDpms, CGstats, scale,
method, prev.logL, itcount, details)
curr.logL <- zzz$logL
d.logL <- zzz$d.logL
d.parms <- zzz$d.parms
.infoPrint(details,1,
cat(sprintf(".mModel_iterate maxit=%i, curr.logL=%14.6f, d.logL=%12.6f, d.parms=%12.8f\n",
maxit, curr.logL, d.logL, d.parms)))
it.exceed.crit <- itcount >=maxit
neg.d.logL <- d.logL < 0
if (!neg.d.logL & d.logL < eps.logL){
break() # We are done
} else {
if (neg.d.logL){
cat(sprintf("Fitting method=%s; logL failed to increase (d.logL=%f) - fit may be questionable\n",
method,d.logL))
break()
} else {
if (it.exceed.crit){
cat(sprintf("Fitting method=%s; Maximum number of iterations=%i exceeded - fit may be questionable\n",
method,itcount))
break()
}
}
} ## if ()
Mparms <- zzz$Mparms
Cparms <- zzz$Cparms
prev.Mparms <- Mparms
prev.logL <- curr.logL
itcount <- itcount + 1
}
}
res <- list(parms=Cparms, logL=curr.logL, init.logL=init.logL)
res
}
####################################################################
###
### .outerloop
###
### Sets update method; either standard or step-halving
### Iterates over all generators in the model
###
####################################################################
.outerloop <- function(Mparms, Cparms, Ad.list, Ac.list,
WMDghk, WMDpms, CGstats, scale,
method, logL, itcount, details){
.infoPrint(details,4, "calling outerloop\n")
prev.Mparms <- Mparms
prev.logL <- logL
logL.fail <- 0
.innerloop <- if (method=="general") .standard.innerloop
else .stephalving.innerloop
for (ii in seq_along( Ad.list )){
Ad.idx <- Ad.list[[ii]]
Ac.idx <- Ac.list[[ii]]
EEghk <- WMDghk[[ii]]
EEpms <- WMDpms[[ii]]
AApms <- weak_marginal_model(Mparms, disc=Ad.idx, cont=Ac.idx, type="pms", details=details)
AAghk <- parm_pms2ghk(AApms)
zzz <- .innerloop(Mparms, Cparms, Ad.idx, Ac.idx,
EEghk, EEpms, AAghk, AApms, CGstats, scale, prev.logL, details)
Mparms <- zzz$Mparms
Cparms <- zzz$Cparms
curr.logL <- zzz$curr.logL
logL.fail <- logL.fail + zzz$logL.fail
}
curr.logL <- .mModel_logLpms(CGstats,Mparms)
d.logL <- curr.logL - prev.logL
#d.logL <- (curr.logL - prev.logL) / -prev.logL ## FIXME NEW
d.parms <- .mModel_parmdiff(Mparms, prev.Mparms)
.infoPrint(details,10,
cat(sprintf("outer(%3d): logL %16.10f, d.logL: %16.10f d.parms: %8.6f logL.fail: %f\n",
itcount, curr.logL, d.logL, d.parms, logL.fail)))
list(Mparms=Mparms, Cparms=Cparms, logL=curr.logL, d.logL=d.logL, logL.fail=logL.fail, d.parms=d.parms)
}
.standard.innerloop <- function(Mparms, Cparms, Ad.idx, Ac.idx,
EEghk, EEpms, AAghk, AApms, CGstats, scale, prev.logL, details){
new.Cparms <- .update.ghkParms(Cparms, Ad.idx, Ac.idx,
EEghk, EEpms, AAghk, AApms, scale, CGstats, details=details)
new.Mparms <- parm_ghk2pms_(new.Cparms)
curr.logL <- d.logL <- d.parms <- NA
logL.fail <- as.numeric(d.logL < 0)
.infoPrint(details, 5,
cat(sprintf(".std(%4.2f): G=%10s, curr.logL=%16.10f d.logL=%16.10f d.parms=%8.6f \n",
scale,
##.toString(c("{",Ad.idx,"|", Ac.idx,"}")),
print_generator(Ad.idx, Ac.idx),
curr.logL, d.logL,
d.parms)))
ans <- list(Mparms=new.Mparms, Cparms=new.Cparms, curr.logL=curr.logL,
d.logL=d.logL, logL.fail=logL.fail,
maxinner.code=NA, step.code=NA)
}
.stephalving.innerloop <- function(Mparms, Cparms, Ad.idx, Ac.idx,
EEghk, EEpms, AAghk, AApms, CGstats, scale, prev.logL, details){
.infoPrint(details,10, "innerloop: finding (model) weak marginals for a generator\n")
prev.Mparms <- Mparms
innercount <- 1
maxinner <- 5
neg.eps <- -1e-4
good.Mparms <- Mparms
good.Cparms <- Cparms
step.code <- 0
maxinner.code <- 0
d.logL <- -99999
curr.logL <- prev.logL
repeat{
new.Cparms <- .update.ghkParms(good.Cparms, Ad.idx, Ac.idx,
EEghk, EEpms, AAghk, AApms, scale, CGstats, details=details)
new.Mparms <- parm_ghk2pms_(new.Cparms)
curr.logL <- .mModel_logLpms(CGstats, new.Mparms)
d.logL <- (curr.logL - prev.logL) / -prev.logL ## FIXME NEW
d.parms <- .mModel_parmdiff(new.Mparms, prev.Mparms)
min.eigen <- min(eigen(new.Mparms$Sigma)$values)
.infoPrint(details,3,
cat(sprintf(".steph(%4.2f): G=%8s, curr.logL=%16.10f d.logL=%16.10f d.parms=%8.6f \n",
scale,
print_generator(Ad.idx, Ac.idx),
curr.logL, d.logL,
d.parms)))
if ((d.logL < neg.eps | min.eigen < 0) & innercount < maxinner){
scale <- scale / 2
innercount <- innercount + 1
step.code <- 1
} else {
if (innercount == maxinner){
Cparms <- good.Cparms
Mparms <- good.Mparms
curr.logL <- .mModel_logLpms(CGstats, Mparms)
maxinner.code <- 1
.infoPrint(details, 2, cat(sprintf("stephalving failed; restoring original parameters; logL: %10.4f\n", curr.logL)))
} else {
Cparms <- new.Cparms
Mparms <- new.Mparms
}
break
}
}
logL.fail <- as.numeric(d.logL < 0)
ans <- list(Mparms=Mparms, Cparms=Cparms, curr.logL=curr.logL,
d.logL=d.logL, logL.fail=logL.fail,
maxinner.code=maxinner.code, step.code=step.code)
return(ans)
}
###########################################################################
###
### .update.ghkParms
###
### This is where the parameter updates take place.
###
###########################################################################
.update.ghkParms <- function(Cparms, Ad.idx, Ac.idx, EEghk, EEpms, AAghk, AApms, scale, CGstats, details=0) {
g.idx <- 1
h.idx <- 2
K.idx <- 3
normalize.ghkParms <- .normalize.ghkParms
##normalize.ghkParms <- normalize_ghkParms_
parm_ghk2pmsFUN <- parm_ghk2pms
.infoPrint(details,5, cat(sprintf(".update.ghkParms: A=%8s\n",
.toString(c("{",Ad.idx,"|", Ac.idx,"}")))))
gt <- .genType(Ad.idx, Ac.idx)
#cat("generator", gt, "\n")
d.parms.crit <- 0.00001
#print(gt)
if (details >= 6){
cat("PRE UPDATED marginal OBSERVED // FITTED values - moment form\n")
print(rbind(.as.matrix(parm_ghk2pmsFUN(EEghk)),.as.matrix(parm_ghk2pmsFUN(AAghk))))
}
## cat(".update.ghkParms - calling .mModel_parmdiff\n")
marg.d.parms <- .mModel_parmdiff(AApms, EEpms)
.infoPrint(details,5, cat(sprintf("PARMDIF=%f\n", marg.d.parms)))
## cat("Cparms:\n"); print(Cparms)
#Cparms<<-Cparms
if (marg.d.parms > d.parms.crit){
if (details>=5){
cat("PRE UPDATE Mparms:\n");
print(.MIparms2matrix(parm_ghk2pmsFUN(Cparms)))
cat("PRE UPDATED marginal OBSERVED // FITTED values - canonical form\n")
print(rbind(.as.matrix((EEghk)),.as.matrix((AAghk))))
cat("PRE UPDATE Cparms:\n");
print(.MIparms2matrix((Cparms)))
}
switch(gt,
"discrete"={
##cat("Cparms//Mparms BEFORE update:\n"); print(Cparms)
upd.g <- scale*(EEghk[['g']] - AAghk[['g']])
g.new <- tableOp2(Cparms[['g']], upd.g, `+`, restore=TRUE)
#max.chg <- c(max(abs(upd.g)),-1,-1)
res <- list(g=g.new, h=Cparms[['h']], K=Cparms[['K']])
##r1 <<- res
res <- normalize.ghkParms(res)
##r2 <<- res
res <- c(res[1:3], Cparms[-(1:3)])
##cat("Cparms//Mparms AFTER update:\n"); print(res)
},
"continuous"={
h.new <- Cparms[['h']]
upd.h <- scale * (EEghk[['h']] - AAghk[['h']])
for (jj in 1:ncol(h.new))
h.new[Ac.idx,jj] <- Cparms[['h']][Ac.idx, jj, drop=FALSE] + upd.h
upd.k <- scale * (EEghk[["K"]] - AAghk[["K"]])
K.new <- Cparms[['K']]
K.new[Ac.idx,Ac.idx] <- K.new[Ac.idx,Ac.idx] + upd.k
## cat("cont: upd.h:\n"); print(cbind(EEghk[['h']], AAghk[['h']], upd.h))
## cat("cont: upd.k:\n"); print(cbind(EEghk[["K"]], AAghk[["K"]], upd.k))
res <- list(g=Cparms[['g']], h=h.new, K=K.new)
res <- normalize.ghkParms(res)
res <- c(res, Cparms[-(1:3)])
},
"mixed"={
## g update:
upd.g <- scale * (EEghk[[g.idx]] - AAghk[[g.idx]])
g.new <- tableOp2(Cparms[[g.idx]], upd.g, `+`, restore=TRUE) ## FIXME : Uses tableOp2
##cat("upd.g:\n"); print(t(round(cbind(EEghk[["g"]], AAghk[["g"]], upd.g),4)))
## K update:
upd.k <- scale * (EEghk[[K.idx]] - AAghk[[K.idx]])
K.new <- Cparms[[K.idx]]
K.new[Ac.idx,Ac.idx] <- K.new[Ac.idx,Ac.idx] + upd.k
##cat("upd.k:\n"); print(round(cbind(EEghk[["K"]], AAghk[["K"]], upd.k),4))
h.new <- Cparms[[h.idx]]
upd.h <- scale * (EEghk[[h.idx]]-AAghk[[h.idx]])
em <- AAghk[['jia.mat']]
Cparms.h <- Cparms[['h']]
for (jj in 1:ncol(em))
h.new[Ac.idx,em[,jj]] <- Cparms.h[Ac.idx,em[,jj],drop=FALSE] + upd.h[,jj]
##cat("upd.h:\n"); print(round(cbind(EEghk[['h']], AAghk[['h']], upd.h),4))
##max.chg <- c(max(abs(upd.g)),max(abs(upd.h)),max(abs(upd.k)))
res <- list(g=g.new, h=h.new, K=K.new)
##parms <<- res
res <- normalize.ghkParms(res)
res <- c(res[1:3], Cparms[-(1:3)])
})
} else {
.infoPrint(details, 5, cat(sprintf("Not updating generator\n")))
res <- Cparms
}
if (details>=6){
cat("POST UPDATE Cparms // Mparms:\n");
MM <- parm_ghk2pmsFUN(Cparms)
MM$p <- MM$p * MM$N
RR <- parm_ghk2pmsFUN(res)
RR$p <- RR$p * RR$N
print(rbind(.as.matrix(res), .as.matrix(RR)))
}
#res$max.chg <- max.chg
res
}
.mModel_logLpms <- function(CGstats, Mparms){
## cg <<- CGstats; mp <<- Mparms
## print(CGstats); print(Mparms)
Sigma.inv <- solveSPD(Mparms[['Sigma']])
n.i <- as.numeric(CGstats[['n.obs']])
N <- sum(n.i)
Q <- nrow(CGstats[['center']])
xxx <- sum(n.i * log(Mparms[['p']])) - N * (Q * log(2*pi) + .logdet(Mparms[['Sigma']])) / 2
##print("HHHHHHHHHHHHHHHHHHHHH")
x4 <- - sum(CGstats[['SSD']] * Sigma.inv) / 2
mu.dif <- CGstats[['center']] - Mparms[['mu']]
quad <- .vMMt(n.i, mu.dif)
x5 <- - sum(Sigma.inv * quad) / 2
return(xxx + x4 + x5)
}
.mModel_parmdiff <- function(curr.Mparms, prev.Mparms){
## cat("curr.Mparms:---------------\n "); print(curr.Mparms)
## cat("prev.Mparms:---------------\n "); print(prev.Mparms)
if (curr.Mparms[['gentype']]=="discrete"){
N <- prev.Mparms[['N']]
cp <- curr.Mparms[['p']]
ppp <- as.numeric(N * abs((cp - prev.Mparms[['p']])) /sqrt((N * cp + 1)))
ans <- max(ppp)
} else {
N <- prev.Mparms[['N']]
cp <- curr.Mparms[['p']]
sss <- curr.Mparms[['Sigma']]
nr <- nrow(sss)
iii <- 1 + (nr + 1) * ((1:nr) - 1)
ddd <- sss[iii] ## faster than diag(sss)
## ppp <- as.numeric(N * abs((cp - prev.Mparms[[p.idx]])) / sqrt((N * cp + 1)))
## mmm <- as.numeric(abs(curr.Mparms[[mu.idx]] - prev.Mparms[[mu.idx]])/sqrt(ddd))
ppp <- c(N * abs((cp - prev.Mparms[['p']])) / sqrt((N * cp + 1)))
mmm <- c(abs(curr.Mparms[['mu']] - prev.Mparms[['mu']]) / sqrt(ddd))
xxx <- abs(sss - prev.Mparms[['Sigma']])
uuu <- xxx / sqrt(tcrossprod(ddd) + sss^2)
ans <- max(c(ppp, mmm, c(uuu)))
## cat("max parm diff:", ans, "\n")
}
ans
}
##############################################################
###
### Create initial parms for mModel from CGstats
###
##############################################################
.CGstats2initpms <- function(CGstats, unif=TRUE){
##CGstats <- unclass(CGstats)
if (unif) { ## Uniform model
PPP <- CGstats$n.obs
PPP[] <- 1 / length(PPP)
MMM <- CGstats$center
MMM[] <- rowMeans(CGstats$center)
CCC <- diag(1, nrow(MMM))
} else {
## p.i
n.i <- as.numeric(CGstats$n.obs)
## mu
mu.i <- CGstats$center
##mu <- rowSums(.colmult(n.i, mu.i)) / sum(n.i)
mu <- rowSumsPrim(.colmult(n.i, mu.i)) / sum(n.i)
## Sigma (total variance when discrete variables are ignored)
S.i <- CGstats$cov
SSD.i <- .colmult(n.i, S.i)
##SSD <- matrix(rowSums(SSD.i), nrow=nrow(CGstats$center))
SSD <- matrix(rowSumsPrim(SSD.i), nrow=nrow(CGstats$center))
d.mu.i <- mu.i - mu
quad <- .colmult(n.i, d.mu.i) %*% t(d.mu.i)
#quad <- tcrossprod(.colmult(sqrt(n.i),d.mu.i))
Sigma <- (SSD + quad) / sum(n.i)
## Create uniform p's
PPP <- CGstats$n.obs
PPP[] <- 1 / length(PPP)
## Create uniform means
MMM <- CGstats$center
MMM[] <- rowSumsPrim(MMM)/ncol(MMM)
CCC <- Sigma
if (nrow(CCC) > 1) CCC <- diag(diag(CCC))
}
rownames(CCC) <- colnames(CCC) <- rownames(MMM) <- CGstats$cont.names
ans <- c(list(p=PPP, mu=MMM, Sigma=CCC, gentype="mixed"), CGstats[-(1:3)])
##class(ans) <- c("pms","MIparms")
return(ans)
}
print_generator <- function(a, b){
paste0("{",
paste0(a, collapse=','),
"|",
paste0(b, collapse=','),
"}")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.