Description Usage Arguments Details Value Author(s) References See Also Examples
Gets the “best” models using top-ranked genes and a forward-selection strategy.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | ## S3 method for class 'BigBang'
forwardSelectionModels(.O,
filter="none",
subset=TRUE,
geneIndexSet=NULL,
starti=NULL,
endi=NULL,
fitnessFunc=if (!is.function(.O$data$modelSelectionFunc)) .O$galgo$fitnessFunc
else .O$data$modelSelectionFunc,
minFitness=NULL,
plot=TRUE,
plot.preview=TRUE,
decision=c("overall", "average"),
plot.type=c("lines", "boxplot"),
approach=c("fitness", "error"),
pch=20,
result=c("all", "models", "fitness"),
threshold=0.99,
main=.O$main,
mord=min(ncol(.O$data$data), 50),
mcol=8,
rcol=(if (mcol < 2) c(rep(1, mord), 0)
else c(cut(1:mord, breaks = mcol, labels = FALSE), 0)),
classFunc=.O$data$classFunc,
compute.classes=is.function(classFunc),
cex=1,
cex.axis=0.66,
set=c(0,1),
...)
|
filter |
The |
subset |
Second level of filter. |
geneIndexSet |
The genes index to use (ignoring |
starti |
Vector of initial index positions of models to test. If specified, should be the same length than |
endi |
Vector of final index positions of models to test. |
fitnessFunc |
The function that evaluate the performance (fitness) of every model (chromosome). The real measure is the “mean” computed from the resulted values for every chromosome. Thus |
minFitness |
The minimum fitness requested. All models with mean fitness above this value will be reported. |
decision |
Specify how to select the model. |
plot |
Logical value indicating whether the result should be displayed. |
plot.type |
|
approach |
|
result |
Specify the desired output. |
threshold |
Specify the percentage of |
mord |
Specify the number of top-ranked genes ( |
mcol |
Specify the number of section for top-rank colouring.( |
rcol |
Specify the colours of sections.( |
classFunc |
Function that predict the class. The default is |
compute.classes |
Specify that class accuracies are desired (and plotted). In non-classification problems, it should be |
pch,main,cex,cex.axis |
Plot parameters. |
... |
Other parameters used for |
It is expected that the fitnessFunc
computes the overall fitness (the proportion of correctly classify samples regardless of their classes). However, this value could be slightly different to the curve marked as "(avg)"
which is the average fitness per class. This difference is due to the different number of samples per class and the number of times specifc samples where used to be part of the test set in both, the fitness function and the class function.
Depends on result
.
Victor Trevino. Francesco Falciani Group. University of Birmingham, U.K. http://www.bip.bham.ac.uk/bioinf
Goldberg, David E. 1989 Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Pub. Co. ISBN: 0201157675
For more information see BigBang
.
*plot()
,
*heatmapModels()
,
*pcaModels()
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## Not run:
#bb is a BigBang object
fsm <- forwardSelectionModels(bb)
fsm
names(fsm)
heatmapModels(fsm, subset=1)
fsm <- forwardSelectionModels(bb, minFitness=0.9,
fitnessFunc=bb$galgo$fitnessFunc)
heatmapModels(fsm, subset=1)
pcaModels(fsm, subset=1)
fitnessSplits(bb, chromosomes=list(fsm$models[[1]]))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.