R/gen-Likelihood.R

Defines functions gen.likelihood

Documented in gen.likelihood

#  Mikis Stasinopoulos 23-11-12
#  this function generates the likelihood of a gamlss object
#  It takes an gamlss object and generates a function with arguments the parameters
#  of the model. 
#  It is created so we can replace the current vcov() function which fails in a lot of occations
#  at the moment  parametric model are allowed where the additve are treated as fixed 
#  I would be nice if the lambda are also used so we can get standard errors for them 
#  In order to do that the X W and G matrices have to be saved after bp()
# TO DO
# i)   check what happents with offset's?? (OK 2-2-13)
# ii)  create a vcov function to replace the (OK done 12/12/12)
# iii)  maybe the function has to have as default the current fitted beta values (OK) 
# iv)  what happents with cencored/ truncated/ log logit distributions???
# v)   what we do is the inverse fails? 
# vi) fixed distribution parameters fails
# vii) what happends if x+pb(x) or 
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
gen.likelihood <- function(object)
{
  if (!is.gamlss(object)) stop("needs a gamlss object")
  #    fam <- as.gamlss.family(object$family) this is changed to get the right link functions
    fam <-  if(is.null(object$call$family)) as.gamlss.family(NO) 
          else as.gamlss.family(object$call$family)
  fname <- object$family[1]
   dfun <- paste("d",fname,sep="")
  #pfun <- paste("p",fname,sep="")
    pdf <- eval(parse(text=dfun))
  # cdf <- eval(parse(text=pfun)) # may be we need this for censored data
  nopar <- length(object$par)
     y  <- object$y
     w  <- object$weights 
     X  <- list()
  links <- list()
  coefs <- list()
    Smo <- list() 
 offSet <- list()
   binomialIndex <- FALSE
  if  (fname%in%.gamlss.bi.list)
   {bd <- object$bd # binomial denominator
   binomialIndex <- TRUE  
   }
  # establish whether data is called
  if (any(grepl("data", names(object$call)))) 
  {
    exitData <- TRUE
##    DS The idea here is if na.omit(data) is used to do the correct thing    
   DaTa <- if (startsWith(as.character(object$call["data"]), "na.omit"))
                eval(parse(text=as.character(object$call["data"]))) else 
                get(as.character(object$call["data"]))	
  }
  else
    exitData <- FALSE  
  for (i in object$par)
  {
    if (length(eval(parse(text=paste(paste("object$",i, sep=""),".fix==TRUE", sep=""))))!=0)
    {
             ff <- eval(parse(text=paste(paste(paste(object$family[1],"()$", sep=""), i, sep=""),".linkfun", sep="")))
       fixvalue <- ff( fitted(object,i)[1])
names(fixvalue) <- paste("fixed",i, sep=" ")
     coefs[[i]] <- fixvalue 
         X[[i]] <- matrix(rep(1, length(object$y)), ncol=1)
         #eval(call(paste(paste(paste(object$family[1],"()$", sep=""), i, sep=""),".linkfun", sep=""), fitted(object,i)[1]))
         # eval(paste(paste(paste(object$family[1],"()$", sep=""), i, sep=""),".linkfun", sep=""))
         #gamlss.family(object$family[1])$nu.link
       links[i] <- eval(parse(text=paste(paste(paste(object$family[1],"()$", sep=""), i, sep=""),".link", sep="")))
       Smo[[i]] <- matrix(rep(0, length(object$y)), ncol=1)
    offSet[[i]] <- rep(0, length(object$y))  
    }
    else
    {
      coefs[[i]] <- eval(parse(text=paste(paste("object$", i, sep=""), ".coefficients", sep="")))
      notNAcoef <- !is.na(coefs[[i]])
      X[[i]] <- eval(parse(text=paste(paste("object$", i, sep=""), ".x", sep="")))  
      if (any(is.na(coefs[[i]])))
      { # this is to ensure that are non NA
        coefs[[i]] <- coefs[[i]][notNAcoef]
        X[[i]] <- as.matrix(X[[i]][,notNAcoef])
      }
      links[i] <- eval(parse(text=paste(paste("object$", i, sep=""), ".link", sep="")))
      Smo[[i]] <- eval(parse(text=paste(paste("object$", i, sep=""), ".s", sep="")))
      offSet[[i]] <- eval(parse(text=paste(paste("object$", i, sep=""), ".offset", sep=""))) 
      #    OffSet <- if (exitData) model.extract(model.frame(eval(parse(text=paste(paste("object$", 
      # i, sep=""), ".terms", sep=""))), data=DaTa), "offset")
      #               else  model.extract(model.frame(eval(parse(text=paste(paste("object$", i, 
      # sep=""), ".terms", sep="")))), "offset")
      #    offSet[[i]] <- if (is.null(OffSet)) rep(0, length(y)) else  OffSet   
    }
  } 
  switch(nopar,
{ #  1 parameter
  lik.fun <- function(par) 
  {
    lmu <-  length(coefs[["mu"]])
    if (length(par)!=lmu) stop("par is not the right length")
    eta.mu <- if (is.null(Smo[["mu"]])) X[["mu"]] %*% par[1:lmu]   + offSet[["mu"]]  
    else X[["mu"]] %*% par[1:lmu] + rowSums(Smo[["mu"]]) + offSet[["mu"]] 
    mu <- fam$mu.linkinv(eta.mu) 
    if ( binomialIndex)  -sum(w*pdf(y, mu=mu, bd=bd, log=TRUE)) else
    -sum(w*pdf(y, mu=mu, log=TRUE))
  }
  thebetas <-  coefs[["mu"]] 
  formals(lik.fun) <- alist(par=thebetas)
},
{ # 2 parameter
  lik.fun <- function(par) 
  { 
    lmu <- length(coefs[["mu"]])
    lsigma <- length(coefs[["sigma"]])
    tl <- lmu + lsigma	
    if (length(par)!=tl) stop("par is not the right length")	
    eta.mu <- if (is.null(Smo[["mu"]])) X[["mu"]] %*% par[1:lmu]  + offSet[["mu"]] 
    else X[["mu"]] %*% par[1:lmu]+ rowSums(Smo[["mu"]]) + offSet[["mu"]] 
    mu <- fam$mu.linkinv(eta.mu) 
    eta.sigma <- if (is.null(Smo[["sigma"]])) X[["sigma"]] %*% par[(lmu+1):(lmu+lsigma)] + offSet[["sigma"]] 
    else X[["sigma"]] %*% par[(lmu+1):(lmu+lsigma)] + rowSums(Smo[["sigma"]])+offSet[["sigma"]]     
    sigma <- fam$sigma.linkinv(eta.sigma)
    if ( binomialIndex)  -sum(w*pdf(y, mu=mu, sigma=sigma, bd=bd, log=TRUE)) else
    -sum(w*pdf(y, mu=mu, sigma=sigma, log=TRUE))
  }
  thebetas <-  c(coefs[["mu"]], coefs[["sigma"]]) 
  formals(lik.fun) <- alist(par=thebetas)
},         
{ # 3 parameter 
  lik.fun <- function(par) 
  {
    lmu <-	 length(coefs[["mu"]])
    lsigma <-  length(coefs[["sigma"]])
    lnu <-  length(coefs[["nu"]])
    tl <-  lmu + lsigma + lnu	
    if (length(par)!=tl) stop("par is not the right length")	
    eta.mu <- if (is.null(Smo[["mu"]])) X[["mu"]] %*% par[1:lmu] + offSet[["mu"]] 
    else X[["mu"]] %*% par[1:lmu]+ rowSums(Smo[["mu"]]) + offSet[["mu"]] 
    mu <- fam$mu.linkinv(eta.mu) 
    eta.sigma <- if (is.null(Smo[["sigma"]])) X[["sigma"]] %*% par[(lmu+1):(lmu+lsigma)] +offSet[["sigma"]] 
    else X[["sigma"]] %*% par[(lmu+1):(lmu+lsigma)] + rowSums(Smo[["sigma"]])+ offSet[["sigma"]]       
    sigma <- fam$sigma.linkinv(eta.sigma)
    eta.nu <- if (is.null(Smo[["nu"]])) X[["nu"]] %*% par[(lmu+lsigma+1):(lmu+lsigma+lnu)] + offSet[["nu"]] 
    else X[["nu"]] %*% par[(lmu+lsigma+1):(lmu+lsigma+lnu)] + rowSums(Smo[["nu"]]) + offSet[["nu"]]     
    nu <- fam$nu.linkinv(eta.nu)
    if ( binomialIndex)   -sum(w*pdf(y, mu=mu, sigma=sigma, nu=nu, bd=bd, log=TRUE)) else
    -sum(w*pdf(y, mu=mu, sigma=sigma, nu=nu, log=TRUE)) 	
  }
  thebetas <-  c(coefs[["mu"]], coefs[["sigma"]], coefs[["nu"]]) 
  formals(lik.fun) <- alist(par=thebetas)
},
{ # 4 parameter
  lik.fun <- function(par) 
  {
    lmu <- length(coefs[["mu"]])
    lsigma <- length(coefs[["sigma"]])
    lnu <-  length(coefs[["nu"]])
    ltau <-  length(coefs[["tau"]])
    tl <- lmu + lsigma + lnu +ltau	
    if (length(par)!=tl) stop("par is not the right length")	
    eta.mu <- if (is.null(Smo[["mu"]])) X[["mu"]] %*% par[1:lmu]  + offSet[["mu"]] 
    else X[["mu"]] %*% par[1:lmu]+ rowSums(Smo[["mu"]]) + offSet[["mu"]] 
    mu <- fam$mu.linkinv(eta.mu) 
    eta.sigma <- if (is.null(Smo[["sigma"]])) X[["sigma"]] %*% par[(lmu+1):(lmu+lsigma)] + offSet[["sigma"]]  
    else X[["sigma"]] %*% par[(lmu+1):(lmu+lsigma)] + rowSums(Smo[["sigma"]]) + offSet[["sigma"]] 
    sigma <- fam$sigma.linkinv(eta.sigma)
    eta.nu <- if (is.null(Smo[["nu"]])) X[["nu"]] %*% par[(lmu+lsigma+1):(lmu+lsigma+lnu)]+ offSet[["nu"]] 
    else X[["nu"]] %*% par[(lmu+lsigma+1):(lmu+lsigma+lnu)] + rowSums(Smo[["nu"]])+ offSet[["nu"]]     
    nu <- fam$nu.linkinv(eta.nu) 
    eta.tau <- if (is.null(Smo[["tau"]]))  X[["tau"]] %*% par[(lmu+lsigma+lnu+1):(lmu+lsigma+lnu+ltau)] + offSet[["tau"]] 
    else  X[["tau"]] %*% par[(lmu+lsigma+lnu+1):(lmu+lsigma+lnu+ltau)]+ rowSums(Smo[["tau"]]) + offSet[["tau"]] 
    tau <- fam$tau.linkinv(eta.tau)
    -sum(w*pdf(y, mu=mu, sigma=sigma, nu=nu, tau=tau, log=TRUE)) 	
  }
  thebetas <-  c(coefs[["mu"]], coefs[["sigma"]], coefs[["nu"]], coefs[["tau"]]) 
  formals(lik.fun) <- alist(par=thebetas)
})
lik.fun
}
#-------------------------------------------------------------------------------

Try the gamlss package in your browser

Any scripts or data that you put into this service are public.

gamlss documentation built on May 29, 2024, 6:08 a.m.