R/mtc.model.R

Defines functions mtc.basic.parameters non.edges mtc.model.graph plot.mtc.model summary.mtc.model print.mtc.model mtc.model mtc.model.defined mtc.model.call

Documented in mtc.model plot.mtc.model print.mtc.model summary.mtc.model

#'@include mtc.hy.prior.R

## mtc.model class methods

mtc.model.call <- function(fn, model, ...) {
  fn <- paste(fn, model[['type']], sep='.')
  do.call(fn, c(list(model), list(...)))
}

mtc.model.defined <- function(model) {
  fns <- c('mtc.model', 'mtc.model.name', 'func.param.matrix')
  fns <- paste(fns, model[['type']], sep='.')
  all(sapply(fns, function(fn) { exists(fn, mode='function') }))
}

mtc.model <- function(network, type="consistency",
    factor=2.5, n.chain=4,
    likelihood=NULL, link=NULL,
    linearModel="random",
    om.scale=NULL,
    hy.prior=mtc.hy.prior("std.dev", "dunif", 0, "om.scale"),
    re.prior.sd=15*om.scale,
    dic=TRUE,
    powerAdjust=NA,
    ...) {
  if (!inherits(network, "mtc.network")) {
    stop('Given network is not an mtc.network')
  }
  if (!is.null(network[['studies']]) && !is.data.frame(network[['studies']])) {
    stop('studies must be a data frame') # older versions did not enforce this
  }

  if (!(linearModel %in% c("random", "fixed"))) {
    stop('linearModel must be either "random" or "fixed"')
  }

  network <- fix.network(network)

  if (check.duplicated.treatments(network, warn=TRUE)) {
    stop("Studies with duplicated treatments are not supported.")
  }

  if (!igraph::is_connected(mtc.network.graph(network))) {
    stop("Network is disconnected - see plot(network)")
  }

  add.std.err <- function(data) {
    if (!is.null(data[['std.dev']]) &&
        !is.null(data[['sampleSize']]) &&
        is.null(data[['std.err']])) {
      data[['std.err']] <- data[['std.dev']] / sqrt(data[['sampleSize']])
    }
    data
  }

  # calculate std.err for "legacy" data sets:
  if (!is.null(network[['data.ab']])) {
    network[['data.ab']] <- add.std.err(network[['data.ab']])
  }
  if (!is.null(network[['data.re']])) {
    network[['data.re']] <- add.std.err(network[['data.re']])
  }

  if (!is.na(powerAdjust)) {
    if (!(powerAdjust %in% names(network[['studies']]))) {
      stop("The value of powerAdjust must be a column in the studies data frame")
    }
    if (any(network[['studies']][[powerAdjust]] > 1) || any(network[['studies']][[powerAdjust]] < 0)) {
      stop("All power adjustment values must in [0, 1]")
    }
  }

  model <- list(
    type = type,
    linearModel = linearModel,
    network = network,
    n.chain = n.chain,
    var.scale = factor,
    dic = dic,
    powerAdjust = powerAdjust)

  if (!mtc.model.defined(model)) {
    stop(paste(type, 'is not an MTC model type.'))
  }

  model[['likelihood']] <- likelihood
  model[['link']] <- link
  if (!is.null(network[['data.ab']]) && all(required.columns.ab.binom.logit() %in% colnames(network[['data.ab']]))) {
    if (is.null(likelihood)) {
      model[['likelihood']] = 'binom'
    }
    if (is.null(link)) {
      model[['link']] = 'logit'
    }
  } else if (!is.null(network[['data.ab']]) && all(required.columns.ab.normal.identity() %in% colnames(network[['data.ab']]))) {
    if (is.null(likelihood)) {
      model[['likelihood']] = 'normal'
    }
    if (is.null(link)) {
      model[['link']] = 'identity'
    }
  } else if (is.null(network[['data.ab']])) {
    if (is.null(likelihood)) {
      warning('Likelihood can not be inferred. Defaulting to normal.')
      model[['likelihood']] = 'normal'
    }
    if (is.null(link)) {
      warning('Link can not be inferred. Defaulting to identity.')
      model[['link']] = 'identity'
    }
  } else {
    if (is.null(likelihood)) {
      stop('No appropriate likelihood could be inferred. Please specify one.')
    }
    if (is.null(link)) {
      stop('No appropriate link could be inferred. Please specify one.')
    }
  }
  if (!ll.defined(model)) {
    stop(paste('likelihood = ', model[['likelihood']],
      ', link = ', model[['link']], ' not found!', sep=''))
  }

  ll.call('validate.data', model, network[['data.ab']])

  model[['om.scale']] <- if (!is.null(om.scale)) om.scale else guess.scale(model)
  model[['hy.prior']] <- hy.prior
  model[['re.prior.sd']] <- if(length(re.prior.sd) == 1) re.prior.sd else 15 * model[['om.scale']]

  model <- mtc.model.call('mtc.model', model, ...)
  if (!grepl('om\\.scale', model[['code']])) {
    model[['data']][['om.scale']] <- NULL # prevent 'unused data' warning
  }
  model
}

print.mtc.model <- function(x, ...) {
  cat("MTC ", x[['type']], " model: ", x[['description']], "\n", sep="")
}

summary.mtc.model <- function(object, ...) {
  list("Description"=paste("MTC ", object[['type']], " model: ", object[['description']], sep=""),
     "Parameters"=mtc.basic.parameters(object))
}

plot.mtc.model <- function(x, layout=igraph::layout.circle, ...) {
  igraph::plot.igraph(mtc.model.graph(x), layout=layout, ...)
}

mtc.model.graph <- function(model) {
  comparisons <- mtc.comparisons(model[['network']])
  g <- if (!is.null(model[['tree']])) model[['tree']] else model[['graph']]
  g <- g + edges(as.vector(unlist(non.edges(g, comparisons))), arrow.mode=0, lty=1, color="grey")
  g
}

# filters list of comparison by edges that are not yet present in graph g
non.edges <- function(g, comparisons) {
  sapply(1:nrow(comparisons), function(i) {
    x <- c(comparisons[['t1']][i], comparisons[['t2']][i])
    if (are.connected(g, x[1], x[2]) || are.connected(g, x[2], x[1])) c() else x
  })
}

mtc.basic.parameters <- function(model) {
  graph <- if (!is.null(model[['tree']])) model[['tree']] else model[['graph']]
  if (!is.null(graph)) {
    sapply(E(graph), function(e) {
      v <- ends(graph, e, names=FALSE)
      paste("d", V(graph)[v[1]]$name, V(graph)[v[2]]$name, sep=".")
    })
  } else {
    NULL
  }
}

Try the gemtc package in your browser

Any scripts or data that you put into this service are public.

gemtc documentation built on July 9, 2023, 5:33 p.m.