Nothing
diseq <- function(x, ...)
{
UseMethod("diseq")
}
diseq.genotype <- function(x, ...)
{
if (nallele(x) < 2)
{
warning("Only 1 Marker allele. Returning NA")
return(NA)
}
observed.no <- table( factor(allele(x,1), levels=allele.names(x)),
factor(allele(x,2), levels=allele.names(x)) )
observed <- prop.table(observed.no)
observed <- 1/2 * (observed + t(observed) )
retval <- diseq.table(observed)
retval$observed.no <- observed.no
retval$call <- match.call()
retval
}
diseq.table <- function(x, ...)
{
observed <- x
allele.freq <- apply(observed,1,sum)
# equal to: allele.freq <- apply(observed,2,sum)
expected <- outer(allele.freq, allele.freq, "*")
oeTab <- cbind(Obs=c(observed),
Exp=c(expected),
"Obs-Exp"=c(observed - expected))
rownames(oeTab) <- outer(rownames(observed),
rownames(observed), paste, sep="/")
diseq <- observed - expected
diag(diseq) <- NA
dmax.positive <- expected
# equals: max( p(i)p(j), p(j)p(i) )
dmax.negative <- outer(allele.freq, allele.freq, pmin ) - expected
# equals: min( p(i) * (1 - p(j)), p(j)( 1 - (1-p(i) ) ) )
dprime <- diseq / ifelse( diseq > 0, dmax.positive, dmax.negative )
# r gives the pairwise correlation coefficient for pairs containing at lease
# one allele from the specified pair.
# For two alleles:
# corr coefficient = diseq / sqrt( p(a) * (1-p(a) ) * p(b) * (1-p(b)) )
#p.1.minus.p <- allele.freq * (1-allele.freq)
#r <- -diseq / sqrt( outer( p.1.minus.p, p.1.minus.p, "*") )
r.denom <- sqrt( allele.freq %*% t( allele.freq)) *
sqrt( (1-allele.freq) %*% t(1-allele.freq))
r <- -diseq / r.denom
# above formula works unchanged for 2 alleles, but requires adjustment
# for multiple alleles.
# r <- r * (length(allele.freq) - 1)
offdiag.expected <- expected
diag(offdiag.expected) <- NA
sum.expected <- sum(offdiag.expected, na.rm=TRUE)
if(all(dim(x)==2)) # 2 allele case
{
diseq.overall <- diseq[1,2]
dprime.overall <- dprime[1,2]
r.overall <- r[1,2]
R2.overall <- r.overall^2
}
else
{
diseq.overall <- sum( abs(diseq) * expected , na.rm=TRUE ) / sum.expected
dprime.overall <- sum( abs(dprime) * expected , na.rm=TRUE ) / sum.expected
r.overall <- sum( abs(r) * expected , na.rm=TRUE ) / sum.expected
R2.overall <- r.overall^2
}
#diag(r) <- 1.0
retval <- list(
call = match.call(),
observed=observed,
expected=expected,
table=oeTab,
allele.freq=allele.freq,
D=diseq,
Dprime=dprime,
r=r,
R2=r^2,
D.overall=diseq.overall,
Dprime.overall=dprime.overall,
r.overall = r.overall,
R2.overall = R2.overall
)
class(retval) <- "diseq"
retval
}
print.diseq <- function(x, show=c("D","D'","r","R^2","table"), ...)
{
cat("\n")
if(!is.null(x$locus))
{
cat("\n")
print( x$locus )
}
cat("\n")
cat("Call: \n")
print(x$call)
cat("\n")
if("D" %in% show)
{
cat("Disequlibrium for each allele pair (D)\n")
cat("\n")
print(x$D)
cat("\n")
}
if("D'" %in% show)
{
cat("Disequlibrium for each allele pair (D')\n")
cat("\n")
print(x$Dprime)
cat("\n")
}
if("r" %in% show)
{
cat("Correlation coefficient for each allele pair (r)\n")
cat("\n")
print(x$r)
cat("\n")
}
if("R^2" %in% show)
{
cat("R^2 for each allele pair\n")
cat("\n")
print(x$R2)
cat("\n")
}
if("table" %in% show)
{
cat("Observed vs Expected frequency table\n")
cat("\n")
print(x$table)
cat("\n")
}
if( any(c("D","D'","r") %in% show))
{
if( ncol(x$r) <= 2 )
cat("Overall Values\n")
else
cat("Overall Values (mean absolute-value weighted by expected allele frequency)\n")
cat("\n")
if("D" %in% show)
cat(" D : ", x$D.overall, "\n", sep="")
if("D'" %in% show)
cat(" D' : ", x$Dprime.overall, "\n", sep="")
if("r" %in% show)
cat(" r : ", x$r.overall, "\n", sep="")
if("R^2" %in% show)
cat(" R^2: ", x$R2.overall, "\n", sep="")
cat("\n")
}
cat("\n")
}
diseq.ci <- function(x, R=1000, conf=0.95, correct=TRUE, na.rm=TRUE, ...)
{
if (!("genotype") %in% class(x) )
stop("x must inherit from class 'genotype'.")
if( any(is.na(x) ) )
{
if( na.rm)
x <- na.omit(x)
else
stop("Missing values and NaN's not allowed if `na.rm' is FALSE.")
}
# step 1 - generate summary table
observed.no <- table( factor(allele(x,1), levels=allele.names(x)),
factor(allele(x,2), levels=allele.names(x)) )
observed <- prop.table(observed.no)
observed <- 1/2 * (observed + t(observed) )
# step 2 - make table into a probability vector for calling rmultinom
n <- sum(observed.no)
prob.vector <- c(observed)
# step 3 - sample R multinomials with the specified frequenceis
# (include observed data to avoid bias)
resample.data <- cbind(c(observed.no),
rmultz2( n, prob.vector, R ) )
bootfun <- function(x) {
observed[,] <- x/n
observed <- 1/2 * (observed + t(observed) )
d <- diseq(observed)
c( "Overall D "=d$D.overall,
"Overall D' "=d$Dprime.overall,
"Overall r "=d$r.overall,
"Overall R^2"=d$R2.overall)
}
results <- apply( resample.data, 2, bootfun )
alpha.2 <- (1-conf)/2
# ci <- t(apply(results, 1,
# quantile, c( alpha.2 , 1-alpha.2), na.rm=TRUE ))
if(length(allele.names(x))<=2)
{
ci <- t(apply(results, 1, function(x) quantile(x, c(0.025, 0.975),
na.rm=na.rm ) ) )
warning.text <- paste("The R^2 disequlibrium statistics is bounded",
"between [0,1]. The confidence ",
"intervals for R^2 values near 0 and 1 are",
"ill-behaved.", sep=" ")
if(correct)
{
warning.text <- paste(warning.text, "A rough correction has",
"been applied, but the intervals still",
"may not be correct for R^2 values near",
"0 or 1.",
sep=" ")
X <- results["Overall R^2",]
ci["Overall R^2",] <- ci.balance(X,X[1],confidence=conf,
minval=0,maxval=1)$ci
}
}
else
{
warning.text <- paste("For more than two alleles, overall",
"disequlibrium statistics are bounded",
"between [0,1]. Because of this, confidence",
"intervals for values near 0 and 1 are",
"ill-behaved.", sep=" ")
if(correct)
{
warning.text <- paste(warning.text, "A rough correction has been applied, but",
"the intervals still may not be correct for values near 0 or 1.",
sep=" ")
ci <- t(apply(results, 1,
function(x)
ci.balance(x,x[1],confidence=conf,
minval=0,maxval=1)$ci ))
}
else
ci <- t(apply(results, 1, function(x) quantile(x, c(0.025, 0.975) ) ) )
warning(paste(strwrap(c(warning.text,"\n"),prefix=" "),collapse="\n") )
}
na.count <- function(x) sum(is.na(x))
nas <- apply( results, 1, na.count)
zero.in.range <- (ci[,1] <= 0) & (ci[,2] >= 0)
ci <- cbind( "Observed"=results[,1], ci, "NAs"=nas,
"Zero in Range"=zero.in.range )
outside.ci <- (ci[,1] < ci[,2]) | (ci[,1] > ci[,3])
if( any(outside.ci) )
warning("One or more observed value outide of confidence interval. Check results.")
if(any(nas>0))
warning("NAs returned from diseq call")
retval <- list(
call=match.call(),
R=R,
conf=conf,
ci=ci,
warning.text=warning.text
)
retval
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.