Nothing
## ----chunk_options, include=FALSE---------------------------------------------
in_pkgdown = requireNamespace("pkgdown", quietly = TRUE) && pkgdown::in_pkgdown()
# image dimensions
if (in_pkgdown) {
tiny_width = 5.5
tiny_height = 3 + 2/3
small_width = med_width = 6.75
small_height = med_height = 4.5
large_width = 8
large_height = 5.25
} else {
tiny_width = 5
tiny_height = 3 + 1/3
small_width = 5
small_height = 3 + 1/3
med_width = 5
med_height = 3 + 1/3
large_width = 5.5
large_height = 2/3
}
knitr::opts_chunk$set(
fig.width = small_width,
fig.height = small_height
)
# graphics device
if (requireNamespace("ragg", quietly = TRUE) && in_pkgdown) {
knitr::opts_chunk$set(
dev = "ragg_png"
)
} else if (capabilities("cairo") && Sys.info()[['sysname']] != "Darwin") {
knitr::opts_chunk$set(
dev = "png",
dev.args = list(type = "cairo")
)
}
# png compression for CRAN
if (!in_pkgdown) {
knitr::knit_hooks$set(pngquant = knitr::hook_pngquant)
knitr::opts_chunk$set(pngquant = "--speed=1 --quality=50")
}
## ----setup, message = FALSE, warning = FALSE----------------------------------
library(dplyr)
library(tidyr)
library(distributional)
library(ggdist)
library(ggplot2)
library(patchwork)
theme_set(theme_ggdist())
## ----hidden_options, include=FALSE----------------------------------------------------------------
.old_options = options(width = 100)
## ----slabinterval_family, echo=FALSE, fig.height=5.5, fig.width=6.2-------------------------------
dists_df = tibble(
# enforce order
geom = rev(c(
"halfeye",
"eye",
"gradientinterval",
"ccdfinterval",
"cdfinterval",
"interval",
"pointinterval",
"slab",
"histinterval",
"dots",
"dotsinterval"
)) %>%
factor(., levels = .),
dist = dist_normal(4, 1)
)
hist_df = tibble(
geom = "histinterval",
x = qnorm(ppoints(1000), 4, 1)
)
dists_df_ = function(geom_) filter(dists_df, geom == geom_)
# FAMILY HEADER
dists_xlim = c(0,8)
header_theme = theme(
axis.line.x = element_blank(),
plot.background = element_rect(fill = "gray95"),
panel.background = element_blank(),
plot.margin = unit(c(5.5, 0, 5.5, 5.5), "points")
)
dists_header_plot = dists_df_("halfeye") %>%
mutate(geom = "slabinterval") %>%
ggplot(aes(y = geom, xdist = dist)) +
stat_slabinterval(position = position_nudge(y = - 0.2)) +
scale_x_continuous(limits = dists_xlim, expand = c(0,0), breaks = NULL) +
scale_y_discrete(expand = c(0.4,0)) +
labs(
subtitle = "The stat_slabinterval / geom_slabinterval family",
x = NULL,
y = NULL
) +
header_theme
statgeom_theme = list(
labs(y = NULL, x = NULL),
theme(
axis.line.x = element_blank(),
axis.line.y = element_blank(),
axis.ticks = element_blank(),
plot.margin = unit(c(5.5, 5.5, 5.5, 0), "points")
)
)
statgeom_header_plot = data.frame(
geom = factor("slabinterval"),
prefix = factor(c("stat_...", "geom_..."), levels = c("stat_...", "geom_..."))
) %>%
ggplot(aes(x = prefix, y = geom)) +
geom_hline(aes(yintercept = as.numeric(geom) - .1), color = "gray80", data = . %>% filter(prefix == "stat_...")) +
geom_point(size = 5, color = "gray65", position = position_nudge(y = -.1)) +
scale_x_discrete(position = "top") +
scale_y_discrete(breaks = NULL, expand = c(0.4,0)) +
statgeom_theme +
header_theme
# SHORTCUT STATS
dists_plot = dists_df %>%
ggplot(aes(y = geom, xdist = dist)) +
geom_blank() + # ensures order
stat_eye(data = dists_df_("eye")) +
stat_halfeye(data = dists_df_("halfeye"), position = position_nudge(y = -0.2)) +
stat_gradientinterval(data = dists_df_("gradientinterval"), scale = .5, fill_type = "gradient") +
stat_ccdfinterval(data = dists_df_("ccdfinterval"), scale = .5) +
stat_cdfinterval(data = dists_df_("cdfinterval"), scale = .5) +
stat_interval(
data = dists_df_("interval"), color = "gray65", alpha = 1/3, linewidth = 10,
position = position_nudge(y = -.1)
) +
stat_pointinterval(data = dists_df_("pointinterval")) +
stat_slab(data = dists_df_("slab"), position = position_nudge(y = - 0.2)) +
stat_histinterval(aes(x = x, xdist = NULL), data = hist_df, position = position_nudge(y = - 0.25)) +
stat_dotsinterval(data = dists_df_("dotsinterval"), position = position_nudge(y = - 0.35)) +
stat_dots(data = dists_df_("dots"), position = position_nudge(y = - 0.35)) +
scale_slab_alpha_continuous(guide = "none") +
scale_x_continuous(limits = dists_xlim, expand = c(0,0)) +
labs(
x = NULL,
y = NULL
)
statgeom_plot = tribble(
~geom, ~prefix,
"halfeye", "stat_...",
"eye", "stat_...",
"gradientinterval", "stat_...",
"ccdfinterval", "stat_...",
"cdfinterval", "stat_...",
"interval", c("stat_...", "geom_..."),
"pointinterval", c("stat_...", "geom_..."),
"slab", c("stat_...", "geom_..."),
"histinterval", "stat_...",
"dots", c("stat_...", "geom_..."),
"dotsinterval", c("stat_...", "geom_...")
) %>%
unnest(prefix) %>%
mutate(
geom = factor(geom, levels = levels(dists_df$geom)),
prefix = factor(prefix, levels = c("stat_...", "geom_..."))
) %>%
ggplot(aes(x = prefix, y = geom)) +
geom_hline(aes(yintercept = as.numeric(geom) - .1), color = "gray80", data = . %>% filter(prefix == "stat_...")) +
geom_point(size = 5, color = "gray65", position = position_nudge(y = -.1)) +
scale_x_discrete(breaks = NULL) +
scale_y_discrete(breaks = NULL, expand = c(0,.6)) +
statgeom_theme
dists_header_plot + statgeom_header_plot +
dists_plot + statgeom_plot +
plot_layout(ncol = 2, widths = c(0.75, 0.25), heights = c(1, 10))
## ----slabinterval_components, echo=FALSE, fig.height=4.2, fig.width=6.5---------------------------
red_ = "#d95f02"
green_ = "#1b9e77"
blue_ = "#7570b3"
bracket_ = function(..., x, xend = x, y, yend = y, color = red_) {
annotate("segment",
arrow = arrow(angle = 90, ends = "both", length = unit(3, "points")),
color = color, linewidth = 0.75,
x = x, xend = xend, y = y, yend = yend,
...
)
}
thickness_ = function(x) dnorm(x,4,1) * 0.9 / dnorm(4,4,1)
thickness_bracket_ = function(x) bracket_(x = x, y = 0, yend = thickness_(x))
refline_ = function(..., x, xend = x, y, yend = y, color = red_, linetype = "solid", alpha = 0.5) {
annotate("segment",
color = color, linetype = linetype, alpha = alpha, linewidth = 0.75,
x = x, xend = xend, y = y, yend = yend,
...
)
}
label_ = function(..., hjust = 0, color = red_) {
annotate("text",
color = color, hjust = hjust, lineheight = 1,
size = 3.25,
...
)
}
arrow_ = function(..., curvature = 0, x, xend = x, y, yend = y) {
annotate("curve",
color = red_, arrow = arrow(angle = 45, length = unit(3, "points"), type = "closed"),
curvature = curvature,
x = x, xend = xend, y = y, yend = yend
)
}
dists_df_("halfeye") %>%
ggplot(aes(y = 0, xdist = dist)) +
stat_slabinterval(
aes(linewidth = NULL),
slab_color = "black",
expand = FALSE,
limits = c(0, 8),
.width = 1 - 2*pnorm(-1),
fill = "gray75",
point_size = 3,
shape = 21,
stroke = 1.5,
linewidth = 3
) +
# height
refline_(x = 0, xend = 8.4, y = 1) +
bracket_(x = 8.4, y = 0, yend = 1) +
label_(label = "height", x = 8.6, y = 1) +
# scale
refline_(x = 4, xend = 8.6, y = 0.9) +
bracket_(x = 8.6, y = 0, yend = 0.9) +
label_(label = "scale = 0.9", x = 8.8, y = 0.9) +
# thickness
thickness_bracket_(2) +
thickness_bracket_(2.2) +
thickness_bracket_(2.4) +
label_(label = "thickness", hjust = 1, x = 1.63, y = thickness_(2.2), vjust = 0) +
arrow_(curvature = 0.2, x = 1.67, xend = 1.87, y = thickness_(2.2), yend = thickness_(2) + 0.01) +
arrow_(x = 1.67, xend = 2.07, y = thickness_(2.2) + 0.01, yend = thickness_(2.2)) +
arrow_(curvature = -0.2, x = 1.67, xend = 2.27, y = thickness_(2.2) + 0.02, yend = thickness_(2.4)) +
# slab line properties
label_(x = 2.5, y = 0.7,
label = 'slab_color = "black"\nslab_linewidth = 1\nslab_linetype = linetype = "solid"',
vjust = 1, hjust = 1
) +
arrow_(x = 2.52, xend = 3.08, y = 0.67, yend = thickness_(3.08) + 0.03, curvature = -0.2) +
# slab fill
label_(x = 5.5, y = 0.7,
label = 'slab_fill = fill = "gray75"\nslab_alpha = alpha = 1',
vjust = 1
) +
arrow_(x = 5.48, xend = 4.5, y = 0.67, yend = thickness_(3), curvature = 0.2) +
# xmin, x, xmax
arrow_(x = 2.65, xend = 3, y = -0.1, yend = -0.01, curvature = -0.2) +
label_(x = 2.7, y = -0.1, label = "xmin", hjust = 1, vjust = 1) +
arrow_(x = 4, y = -0.1, yend = -0.04) +
label_(x = 4, y = -0.1, label = "x", hjust = 0.5, vjust = 1) +
arrow_(x = 5.35, xend = 5, y = -0.1, yend = -0.01, curvature = 0.2) +
label_(x = 5.3, y = -0.1, label = "xmax", hjust = 0, vjust = 1) +
# interval properties
label_(x = 3.5, y = -0.2,
label = paste0(
'interval_color = color = "black"\n',
'interval_alpha = alpha = 1\n',
'interval_linetype = linetype = "solid"\n',
'linewidth = size = 3'
),
vjust = 1, hjust = 1
) +
arrow_(x = 3.3, xend = 3.4, y = -0.18, yend = -0.01, curvature = -0.1) +
# point properties
label_(x = 4.5, y = -0.2,
label = paste0(
'point_fill = fill = "gray75"\n',
'point_color = color = "black"\n',
'point_alpha = alpha = 1\n',
'point_size = size = 3\n',
'shape = 21\n',
'stroke = 1.5'
),
vjust = 1, hjust = 0
) +
arrow_(x = 4.55, xend = 4.12, y = -0.18, yend = -0.02, curvature = 0.2) +
coord_cartesian(xlim = c(-1, 10), ylim = c(-0.6, 1)) +
labs(subtitle = "Properties of geom_slabinterval")
## ----sample_data----------------------------------------------------------------------------------
set.seed(1234)
df = tribble(
~group, ~subgroup, ~value,
"a", "h", rnorm(1000, mean = 5),
"b", "h", rnorm(1000, mean = 7, sd = 1.5),
"c", "h", rnorm(1000, mean = 8),
"c", "i", rnorm(1000, mean = 9),
"c", "j", rnorm(1000, mean = 7)
) %>%
unnest(value)
## ----group_halfeye, fig.width = tiny_height, fig.height = tiny_height-----------------------------
df %>%
ggplot(aes(y = group, x = value)) +
stat_halfeye() +
ggtitle("stat_halfeye() (or stat_slabinterval())")
## ----eye_side, fig.width = med_width, fig.height = small_height-----------------------------------
p = df %>%
ggplot(aes(x = group, y = value)) +
theme(panel.background = element_rect(color = "grey70"))
(
p + stat_slabinterval(side = "left") +
labs(title = "stat_slabinterval()", subtitle = "side = 'left'")
) + (
p + stat_slabinterval(side = "both") +
labs(subtitle = "side = 'both'")
) + (
p + stat_slabinterval(side = "right") +
labs(subtitle = "side = 'right'")
)
## ----eyeh_side, fig.width = med_width, fig.height = small_height----------------------------------
p = df %>%
ggplot(aes(x = value, y = group)) +
theme(panel.background = element_rect(color = "grey70"))
(
# side = "left" would give the same result
p + stat_slabinterval(side = "left") +
ggtitle("stat_slabinterval()") + labs(subtitle = "side = 'bottom'")
) + (
p + stat_slabinterval(side = "both") + labs(subtitle = "side = 'both'")
) + (
# side = "right" would give the same result
p + stat_slabinterval(side = "right") + labs(subtitle = "side = 'top'")
)
## ----eye_dodge------------------------------------------------------------------------------------
df %>%
ggplot(aes(x = group, y = value, fill = subgroup)) +
stat_eye(position = "dodge") +
ggtitle("stat_eye(position = 'dodge')")
## ----dist_data------------------------------------------------------------------------------------
dist_df = tribble(
~group, ~subgroup, ~mean, ~sd,
"a", "h", 5, 1,
"b", "h", 7, 1.5,
"c", "h", 8, 1,
"c", "i", 9, 1,
"c", "j", 7, 1
)
## ----dist_eye_dodge_distributional----------------------------------------------------------------
dist_df %>%
ggplot(aes(x = group, ydist = dist_normal(mean, sd), fill = subgroup)) +
stat_eye(position = "dodge") +
ggtitle("stat_eye(position = 'dodge')", "aes(ydist = dist_normal(mean, sd))")
## ----beta_stacked---------------------------------------------------------------------------------
data.frame(alpha = seq(5, 100, length.out = 10)) %>%
ggplot(aes(y = alpha, xdist = dist_beta(alpha, 10))) +
stat_halfeye() +
labs(
title = "stat_halfeye()",
subtitle = "aes(xdist = dist_beta(alpha, 10), y = alpha)",
x = "Beta(alpha,10) distribution"
)
## ----beta_overplotted_slabh-----------------------------------------------------------------------
data.frame(alpha = seq(5, 100, length.out = 10)) %>%
ggplot(aes(xdist = dist_beta(alpha, 10), color = alpha)) +
stat_slab(fill = NA) +
coord_cartesian(expand = FALSE) +
scale_color_viridis_c() +
labs(
title = "stat_slab()",
subtitle = "aes(xdist = dist_beta(alpha, 10), color = alpha)",
x = "Beta(alpha,10) distribution",
y = NULL
)
## ----priors_fake, eval=FALSE----------------------------------------------------------------------
# # NB these priors are made up!
# priors = c(
# prior(normal(1, 0.5), class = b),
# prior(gamma(2, 2), class = phi),
# # lb = 0 sets a lower bound of 0, i.e. a half-Normal distribution
# prior(normal(0, 1), class = sigma, lb = 0)
# )
# priors
## ----priors, echo=FALSE---------------------------------------------------------------------------
# we want to avoid a brms dependency, so we fake it above and
# just show the output of brms::prior() here
priors = data.frame(
prior = c("normal(1, 0.5)", "gamma(2, 2)", "normal(0, 1)"),
class = c("b", "phi", "sigma"),
coef = c("", "", ""),
group = c("", "", ""),
resp = c("", "", ""),
dpar = c("", "", ""),
nlpar = c("", "", ""),
lb = c(NA, NA, "0"),
ub = c(NA, NA, NA),
stringsAsFactors = FALSE
)
priors
## ----parse_dist-----------------------------------------------------------------------------------
priors %>%
parse_dist(prior)
## ----prior_dist_halfeyeh--------------------------------------------------------------------------
priors %>%
parse_dist(prior) %>%
ggplot(aes(y = paste(class, "~", format(.dist_obj)), xdist = .dist_obj)) +
stat_halfeye(subguide = subguide_inside(position = "right", title = "density")) +
labs(
title = "stat_halfeye()",
subtitle = "with parse_dist() and brms::prior() to show priors",
x = NULL,
y = NULL
)
## ----prior_post, fig.width = med_width, fig.height = small_height * 2/3---------------------------
prior_post = data.frame(
prior = dist_normal(0, 1),
posterior = dist_normal(0.1, 0.5)
)
separate_scale_plot = prior_post %>%
ggplot() +
stat_halfeye(aes(xdist = posterior)) +
stat_slab(aes(xdist = prior), fill = NA, color = "red") +
labs(
subtitle = "default: no shared thickness scale"
)
shared_scale_plot = prior_post %>%
ggplot() +
stat_halfeye(aes(xdist = posterior)) +
stat_slab(aes(xdist = prior), fill = NA, color = "#e41a1c") +
scale_thickness_shared() +
labs(subtitle = "with scale_thickness_shared()")
separate_scale_plot + shared_scale_plot + plot_annotation(title = "prior (slab) + posterior (halfeye)")
## ----dist_halfeyeh_log_scale, fig.width = small_height, fig.height = small_height/1.75------------
data.frame(dist = dist_lognormal(log(10), 2*log(10))) %>%
ggplot(aes(xdist = dist)) +
stat_halfeye() +
scale_x_log10(breaks = 10^seq(-5,7, by = 2))
## ----stat_histinterval_horizontal, fig.width = med_width, fig.height = small_height---------------
p = df %>%
ggplot(aes(x = group, y = value)) +
theme(panel.background = element_rect(color = "grey70"))
ph = df %>%
ggplot(aes(y = group, x = value)) +
theme(panel.background = element_rect(color = "grey70"))
(
p + stat_histinterval() + labs(title = "stat_histinterval()", subtitle = "horizontal")
) + (
ph + stat_histinterval() + labs(subtitle = "vertical")
)
## ----stat_histintervalh_outlines, fig.width = med_width, fig.height = small_height----------------
(
ph + stat_histinterval(slab_color = "gray45", outline_bars = FALSE) +
labs(title = "stat_histinterval", subtitle = "outline_bars = FALSE (default)")
) + (
ph + stat_histinterval(slab_color = "gray45", outline_bars = TRUE) +
labs(subtitle = "outline_bars = TRUE")
)
## ----dist_slab_discrete, fig.width = med_width, fig.height = small_height-------------------------
tibble(
group = c("a","b","c","d","e"),
lambda = c(13,7,4,3,2)
) %>%
ggplot(aes(x = group)) +
stat_slab(aes(ydist = dist_poisson(lambda), fill = after_stat(pdf))) +
geom_line(aes(y = lambda, group = NA), linewidth = 1) +
geom_point(aes(y = lambda), size = 2.5) +
labs(fill = "Pr(y)") +
ggtitle("stat_slab()", "aes(ydist = dist_poisson(lambda), fill = after_stat(pdf))")
## ----ccdf_barplot---------------------------------------------------------------------------------
df %>%
ggplot(aes(x = group, y = value, fill = subgroup, group = subgroup)) +
stat_ccdfinterval(position = "dodge") +
ggtitle("stat_ccdfinterval(position = 'dodge')")
## ----ccdf_justification---------------------------------------------------------------------------
df %>%
ggplot(aes(x = group, y = value, fill = subgroup)) +
stat_ccdfinterval(position = "dodge", justification = 1) +
expand_limits(y = 0) +
coord_cartesian(expand = FALSE) +
ggtitle("stat_ccdfinterval(position = 'dodge', justification = 1)")
## ----gradient_dodge-------------------------------------------------------------------------------
df %>%
ggplot(aes(x = group, y = value, fill = subgroup)) +
stat_gradientinterval(position = "dodge") +
labs(title = "stat_gradientinterval(position = 'dodge')")
## ----gradient_dodge_nice--------------------------------------------------------------------------
df %>%
ggplot(aes(x = group, y = value, fill = subgroup)) +
stat_gradientinterval(position = "dodge", fill_type = "gradient") +
labs(title = "stat_gradientinterval(position = 'dodge', fill_type = 'gradient')")
## ----dots_dodge_nocolor, fig.width = med_width, fig.height = small_height-------------------------
df %>%
ggplot(aes(x = group, y = value, fill = subgroup, color = subgroup)) +
stat_dots(position = "dodgejust") +
labs(
title = "stat_dots()",
subtitle = "aes(fill = subgroup, color = subgroup))"
)
## ----quantile_dots_dodge, fig.width = med_width, fig.height = small_height------------------------
df %>%
ggplot(aes(x = group, y = value, fill = subgroup)) +
stat_dots(position = "dodgejust", quantiles = 50, color = NA) +
labs(title = "stat_dots(quantiles = 50)")
## ----ccdf_gradient, fig.width = med_width, fig.height = small_height------------------------------
df %>%
ggplot(aes(x = group, y = value, fill = subgroup)) +
stat_ccdfinterval(aes(slab_alpha = after_stat(f)),
thickness = 1, position = "dodge", fill_type = "gradient"
) +
expand_limits(y = 0) +
# plus coord_cartesian so there is no space between bars and axis
coord_cartesian(expand = FALSE) +
ggtitle("stat_ccdfinterval(thickness = 1)", "aes(slab_alpha = after_stat(f))")
## ----norm_vs_t_highlight, fig.width = small_width, fig.height = small_height----------------------
priors = tibble(
dist = c(dist_normal(0, 1), dist_student_t(3, 0, 1))
)
priors %>%
ggplot(aes(y = format(dist), xdist = dist)) +
stat_halfeye(aes(fill = after_stat(abs(x) < 1.5))) +
ggtitle("stat_halfeye()", "aes(fill = after_stat(abs(x) < 1.5)))") +
# we'll use a nicer palette than the default for highlighting:
scale_fill_manual(values = c("gray85", "skyblue"))
## ----norm_vs_t_gradient_eye, fig.width = small_width, fig.height = small_height-------------------
priors %>%
ggplot(aes(y = format(dist), xdist = dist)) +
stat_eye(aes(slab_alpha = after_stat(f), fill = after_stat(x > 1)), fill_type = "gradient") +
ggtitle(
"stat_eye(fill_type = 'gradient')",
"aes(slab_alpha = after_stat(f), fill = after_stat(x > 1)))"
) +
# we'll use a nicer palette than the default for highlighting:
scale_fill_manual(values = c("gray75", "skyblue"))
## ----correll_gradient, fig.width = small_width, fig.height = small_height/1.75--------------------
priors %>%
ggplot(aes(y = format(dist), xdist = dist)) +
stat_gradientinterval(aes(slab_alpha = after_stat(-pmax(abs(1 - 2*cdf), .95))),
fill_type = "gradient"
) +
scale_slab_alpha_continuous(guide = "none") +
ggtitle(
"stat_gradientinterval(fill_type = 'gradient')",
"aes(slab_alpha = after_stat(-pmax(abs(1 - 2*cdf), .95)))"
)
## ----helske_gradient_eye, fig.width = small_width, fig.height = small_height----------------------
priors %>%
ggplot(aes(y = format(dist), xdist = dist)) +
stat_eye(aes(slab_alpha = after_stat(-pmax(abs(1 - 2*cdf), .95))), fill_type = "gradient") +
scale_slab_alpha_continuous(guide = "none") +
ggtitle(
"stat_eye(fill_type = 'gradient')",
"aes(slab_alpha = after_stat(-pmax(abs(1 - 2*cdf), .95)))"
)
## ----tukey_pencils, fig.width = small_width, fig.height = small_height----------------------------
dist_df %>%
ggplot(aes(x = group, ydist = dist_normal(mean, sd), fill = subgroup)) +
stat_slab(
aes(
thickness = after_stat(pmax(0, abs(1 - 2*cdf) - .95)),
fill_ramp = after_stat(pmax(0, abs(1 - 2*cdf) - .95))
),
side = "both", position = "dodge", fill_type = "gradient"
) +
labs(
title = 'stat_slab(side = "both")',
subtitle = paste0(
"aes(fill = subgroup,\n ",
"fill_ramp and thickness = after_stat(pmax(0, abs(1 - 2*cdf) - .95)))"
)
) +
guides(fill_ramp = "none") +
coord_cartesian(expand = FALSE)
## ----halfeye_filled_intervals, fig.width = small_width, fig.height = small_height-----------------
df %>%
ggplot(aes(y = group, x = value)) +
stat_halfeye(aes(fill = after_stat(level))) +
# na.translate = FALSE drops the unnecessary NA from the legend, which covers
# slab values outside the intervals. An alternative would be to use
# na.value = ... to set the color for values outside the intervals.
scale_fill_brewer(na.translate = FALSE) +
labs(
title = "stat_halfeye()",
subtitle = "aes(fill = after_stat(level))",
fill = "interval"
)
## ----halfeye_filled_intervals_2, fig.width = small_width, fig.height = small_height---------------
df %>%
ggplot(aes(y = group, x = value)) +
stat_slab(aes(fill = after_stat(level)), .width = c(.66, .95, 1)) +
stat_pointinterval() +
scale_fill_brewer() +
labs(
title = "stat_slab()",
subtitle = "aes(fill = after_stat(level), .width = c(.66, .95, 1))",
fill = "interval"
)
## ----halfeye_qi_vs_hdi, fig.width = small_width, fig.height = small_height------------------------
qi_plot = data.frame(dist = dist_beta(10, 2)) %>%
ggplot(aes(xdist = dist)) +
stat_halfeye(aes(fill = after_stat(level)), point_interval = median_qi, .width = c(.5, .8, .95)) +
scale_fill_brewer(na.value = "gray95") +
labs(subtitle = "stat_halfeye(aes(fill = after_stat(level)), point_interval = median_qi)")
hdi_plot = data.frame(dist = dist_beta(10, 2)) %>%
ggplot(aes(xdist = dist)) +
stat_halfeye(aes(fill = after_stat(level)), point_interval = mode_hdci, .width = c(.5, .8, .95)) +
scale_fill_brewer(na.value = "gray95") +
labs(subtitle = "stat_halfeye(aes(fill = after_stat(level)), point_interval = mode_hdci)")
qi_plot /
hdi_plot
## ----halfeye_qi_vs_hdi_spikes, fig.width = small_width, fig.height = small_height-----------------
qi_plot_spikes = data.frame(dist = dist_beta(10, 2)) %>%
ggplot(aes(xdist = dist)) +
stat_slab(aes(fill = after_stat(level)), point_interval = median_qi, .width = c(.5, .95)) +
# stat_spike(at = c(median, qi)) would also work, but this demonstrates how
# to re-label the names of the `at` computed variable and use it in an
# aesthetic mapping by mapping it to `linetype`
stat_spike(aes(linetype = after_stat(at)), at = c("median", "interval (qi)" = qi)) +
scale_fill_brewer(na.value = "gray95") +
scale_thickness_shared() +
labs(subtitle = "stat_slab() + stat_spike(at = c(median, qi))")
hdi_plot_spikes = data.frame(dist = dist_beta(10, 2)) %>%
ggplot(aes(xdist = dist)) +
stat_slab(aes(fill = after_stat(level)), point_interval = mode_hdi, .width = c(.5, .95)) +
stat_spike(aes(linetype = after_stat(at)), at = c("mode" = Mode, "interval (hdi)" = hdi)) +
scale_fill_brewer(na.value = "gray95") +
scale_thickness_shared() +
labs(subtitle = "stat_slab() + stat_spike(at = c(Mode, hdi))")
qi_plot_spikes /
hdi_plot_spikes
## ----halfeye_filled_intervals_subgroup, fig.width = small_width, fig.height = small_height--------
df %>%
ggplot(aes(y = group, x = value)) +
stat_halfeye(
aes(fill = subgroup, fill_ramp = after_stat(level)),
.width = c(.50, .80, .95),
# NOTE: we use position = "dodgejust" (a dodge that respects the
# justification of intervals relative to slabs) instead of
# position = "dodge" here because it ensures the topmost slab does
# not extend beyond the plot limits
position = "dodgejust"
) +
# a range from 1 down to 0.2 ensures the fill goes dark to light inside-out
# and doesn't get all the way down to white (0) on the lightest color
scale_fill_ramp_discrete(na.translate = FALSE) +
labs(
title = "stat_halfeye(position = 'dodgejust')",
subtitle = "aes(fill = subgroup, fill_ramp = after_stat(level))",
fill_ramp = "interval"
)
## ----dist_interval_color_ramp, fig.width = small_width, fig.height = small_height-----------------
dist_df %>%
ggplot(aes(x = group, ydist = dist_normal(mean, sd), color = subgroup)) +
stat_interval(aes(color_ramp = after_stat(level)), position = "dodge") +
labs(
title = "stat_interval()",
subtitle = "aes(color = subgroup, color_ramp = after_stat(level))"
)
## ----raindrop, fig.width = small_width, fig.height = small_height/1.5-----------------------------
priors %>%
ggplot(aes(y = format(dist), xdist = dist)) +
# must also use normalize = "groups" because min(log(pdf)) will be different for each dist
stat_slab(
aes(thickness = after_stat(ifelse(.width <= 0.99, log(pdf), NA))),
normalize = "groups", fill = "gray85", .width = .99, side = "both"
) +
stat_eye(
aes(thickness = after_stat(ifelse(.width <= 0.95, log(pdf), NA))),
normalize = "groups"
) +
ggtitle(
'stat_eye(normalize = "groups")',
paste0(
"with aes(thickness = after_stat(ifelse(.width <= 0.95, log(pdf), NA)))\n",
"and aes(thickness = after_stat(ifelse(.width <= 0.99, log(pdf), NA)))"
)
)
## ----slab_ridge, fig.width = small_width, fig.height = small_height-------------------------------
set.seed(1234)
ridges_df = data.frame(
group = letters[7:1],
x = rnorm(700, mean = 1:7, sd = 2)
)
ridges_df %>%
ggplot(aes(y = group, x = x)) +
stat_slab(height = 2, color = "black") +
ggtitle("stat_slab(height = 2, color = 'black')")
## ----slab_ridge_ramp, fig.width = small_width, fig.height = small_height--------------------------
ridges_df %>%
ggplot(aes(
y = group, x = x,
fill = group, fill_ramp = after_stat(abs(x)),
color_ramp = after_stat(-dnorm(x, 0, 2))
)) +
stat_slab(
height = 2, color = "gray15",
expand = TRUE, trim = FALSE, density = "unbounded",
fill_type = "gradient",
show.legend = FALSE
) +
geom_vline(xintercept = 0, color = "gray85", linetype = "dashed") +
ggtitle(
'stat_slab(height = 2, color = "black", expand = TRUE, trim = FALSE)',
'aes(fill = group, fill_ramp = after_stat(abs(x)), color_ramp = after_stat(-dnorm(x, 0, 2)))'
) +
scale_fill_viridis_d()
## ----varying_side_dotplot, fig.width = small_width, fig.height = small_height---------------------
dist_df %>%
filter(subgroup == "h") %>%
mutate(side = c("top", "both", "bottom")) %>%
ggplot(aes(y = group, xdist = dist_normal(mean, sd), side = side)) +
stat_dotsinterval(scale = 2/3) +
labs(
title = 'stat_dotsinterval(scale = 2/3)',
subtitle = 'aes(xdist = dist_normal(mean, sd), side = c("top","both","bottom"))'
) +
coord_cartesian()
## ----halfeye_quantile_dotplot, fig.width = small_width, fig.height = small_height-----------------
df %>%
ggplot(aes(x = group, y = value, fill = subgroup)) +
stat_slab(side = "left", scale = 0.5, position = "dodge") +
stat_dotsinterval(scale = 0.5, quantiles = 100, position = "dodge") +
stat_pointinterval(
geom = "label",
aes(label = paste0(group, subgroup)),
.width = .5, # set to a scalar to draw only one label instead of two
position = position_dodge(width = 1),
size = 3.5
) +
labs(title = paste0(
'stat_halfeye(side = "left") +\n',
'stat_dotsinterval(quantiles = 100) +\n',
'stat_pointinterval(geom = "label")'
))
## ----slab_and_pointinterval, fig.width = small_width, fig.height = small_height/1.25--------------
df %>%
ggplot(aes(fill = group, color = group, x = value)) +
stat_slab(alpha = .3) +
stat_pointinterval(position = position_dodge(width = .4, preserve = "single")) +
labs(
title = "stat_slab() and stat_pointinterval()",
subtitle = "with position_dodge() applied to the intervals",
y = NULL
) +
scale_y_continuous(breaks = NULL)
## ----reset_options, include=FALSE---------------------------------------------
options(.old_options)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.