R/ggaverage.R

Defines functions ggaverage

Documented in ggaverage

#' @rdname ggpredict
#' @export
ggaverage <- function(model,
                      terms,
                      ci_level = 0.95,
                      type = "fixed",
                      typical = "mean",
                      condition = NULL,
                      back_transform = TRUE,
                      vcov_fun = NULL,
                      vcov_type = NULL,
                      vcov_args = NULL,
                      weights = NULL,
                      verbose = TRUE,
                      ...) {
  insight::check_if_installed("marginaleffects")

  # check arguments
  type <- .validate_type_argument(model, type, marginaleffects = TRUE)
  dot_args <- list(...)

  # process "terms", so we have the default character format. Furthermore,
  # check terms argument, to make sure that terms were not misspelled and are
  # indeed existing in the data
  if (!missing(terms)) {
    terms <- .reconstruct_focal_terms(terms, model)
  }

  # check class of fitted model, to make sure we have just one class-attribute
  # (while "inherits()" may return multiple attributes)
  model_class <- get_predict_function(model)

  # clean "terms" from possible brackets
  cleaned_terms <- .clean_terms(terms)

  # check model family
  model_info <- .get_model_info(model)

  # get model frame
  model_frame <- .get_model_data(model)

  # model name, for later use in test_predictions
  model_name <- deparse(substitute(model))

  # expand model frame to data grid of unique combinations
  data_grid <- .data_grid(
    model = model, model_frame = model_frame, terms = terms, value_adjustment = typical,
    condition = condition, show_pretty_message = verbose, verbose = verbose
  )

  # save original frame, for labels, and original terms
  original_model_frame <- model_frame
  original_terms <- terms

  # clear argument from brackets
  terms <- cleaned_terms

  # if we have "vcov_fun" arguments, and `margin` is "empirical", we
  # need to prepare the `vcov` argument for "marginaleffects".
  if (!is.null(vcov_fun)) {
    vcov_arg <- .get_variance_covariance_matrix(model, vcov_fun, vcov_args, vcov_type, skip_if_null = TRUE)
  } else {
    vcov_arg <- TRUE
  }

  # ci_level = NA should prevent the computation of confidence intervals
  # in marginaleffects, this is equivalent to setting vcov = FALSE
  if (is.na(ci_level)) {
    ci_level <- 0.95
    vcov_arg <- FALSE
  }

  # new policy for glmmTMB models
  if (inherits(model, "glmmTMB") && is.null(vcov_arg)) {
    vcov_arg <- TRUE
  }

  # calculate average predictions
  at_list <- lapply(data_grid, unique)
  me_args <- list(
    model,
    variables = at_list[terms],
    conf_level = ci_level,
    type = type,
    df = .get_df(model),
    vcov = vcov_arg,
    wts = weights
  )
  prediction_data <- .call_me(
    "avg_predictions",
    me_args,
    dot_args,
    include_random = insight::is_mixed_model(model)
  )

  # return if no predicted values have been computed
  if (is.null(prediction_data)) {
    return(NULL)
  }

  # we want a "clear" data frame here
  prediction_data <- as.data.frame(prediction_data)
  # rename variables, keep predictions and std.error
  prediction_data <- .var_rename(
    prediction_data,
    estimate = "predicted",
    group = "response.level"
  )
  # select variables and merge predictions with data grid
  ordered_columns <- intersect(
    colnames(prediction_data),
    c(terms, "predicted", "std.error", "conf.low", "conf.high", "response.level")
  )
  prediction_data <- prediction_data[ordered_columns]
  # if we have a "response.level", save the row order
  if ("response.level" %in% colnames(prediction_data)) {
    prediction_data$.row_id <- seq_len(nrow(prediction_data))
  }
  # merge data grid (values of focal terms) to predictions
  prediction_data <- merge(data_grid, prediction_data, all.x = TRUE)
  # restore row order
  if (!is.null(prediction_data$.row_id)) {
    prediction_data <- prediction_data[order(prediction_data$.row_id), ]
    prediction_data$.row_id <- NULL
  }

  # add attributes, needed for plotting etc.
  attributes(prediction_data) <- utils::modifyList(attributes(data_grid), attributes(prediction_data))
  attr(prediction_data, "std.error") <- prediction_data$std.error

  # for avg_predictions, we average over factor levels, so no adjustments here
  attributes(prediction_data)$constant.values <- NULL
  attributes(data_grid)$constant.values <- NULL

  result <- .post_processing_predictions(
    model = model,
    prediction_data = prediction_data,
    original_model_frame = original_model_frame,
    cleaned_terms = cleaned_terms,
    averaged_predictions = TRUE
  )

  # check if outcome is log-transformed, and if so,
  # back-transform predicted values to response scale
  # but first, save original predicted values, to save as attribute
  if (back_transform) {
    untransformed.predictions <- result$predicted
    response.transform <- insight::find_terms(model)[["response"]]
  } else {
    untransformed.predictions <- response.transform <- NULL
  }
  result <- .back_transform_response(model, result, back_transform, verbose = verbose)

  # add raw data as well
  attr(result, "rawdata") <- .back_transform_data(
    model,
    mydf = .get_raw_data(model, original_model_frame, terms),
    back.transform = back_transform
  )

  attr(result, "model.name") <- model_name

  .post_processing_labels(
    model = model,
    result = result,
    original_model_frame = original_model_frame,
    data_grid = data_grid,
    cleaned_terms = cleaned_terms,
    original_terms = original_terms,
    model_info = model_info,
    type = type,
    prediction.interval = FALSE,
    at_list = at_list,
    condition = condition,
    ci.lvl = ci_level,
    untransformed.predictions = untransformed.predictions,
    back.transform = back_transform,
    response.transform = response.transform,
    vcov.args = if (isTRUE(vcov_arg)) NULL else vcov_arg,
    margin = "empirical",
    verbose = verbose
  )
}

Try the ggeffects package in your browser

Any scripts or data that you put into this service are public.

ggeffects documentation built on Sept. 12, 2024, 7:41 a.m.