Nothing
#' @rdname ggpredict
#' @export
ggaverage <- function(model,
terms,
ci_level = 0.95,
type = "fixed",
typical = "mean",
condition = NULL,
back_transform = TRUE,
vcov_fun = NULL,
vcov_type = NULL,
vcov_args = NULL,
weights = NULL,
verbose = TRUE,
...) {
insight::check_if_installed("marginaleffects")
# check arguments
type <- .validate_type_argument(model, type, marginaleffects = TRUE)
dot_args <- list(...)
# process "terms", so we have the default character format. Furthermore,
# check terms argument, to make sure that terms were not misspelled and are
# indeed existing in the data
if (!missing(terms)) {
terms <- .reconstruct_focal_terms(terms, model)
}
# check class of fitted model, to make sure we have just one class-attribute
# (while "inherits()" may return multiple attributes)
model_class <- get_predict_function(model)
# clean "terms" from possible brackets
cleaned_terms <- .clean_terms(terms)
# check model family
model_info <- .get_model_info(model)
# get model frame
model_frame <- .get_model_data(model)
# model name, for later use in test_predictions
model_name <- deparse(substitute(model))
# expand model frame to data grid of unique combinations
data_grid <- .data_grid(
model = model, model_frame = model_frame, terms = terms, value_adjustment = typical,
condition = condition, show_pretty_message = verbose, verbose = verbose
)
# save original frame, for labels, and original terms
original_model_frame <- model_frame
original_terms <- terms
# clear argument from brackets
terms <- cleaned_terms
# if we have "vcov_fun" arguments, and `margin` is "empirical", we
# need to prepare the `vcov` argument for "marginaleffects".
if (!is.null(vcov_fun)) {
vcov_arg <- .get_variance_covariance_matrix(model, vcov_fun, vcov_args, vcov_type, skip_if_null = TRUE)
} else {
vcov_arg <- TRUE
}
# ci_level = NA should prevent the computation of confidence intervals
# in marginaleffects, this is equivalent to setting vcov = FALSE
if (is.na(ci_level)) {
ci_level <- 0.95
vcov_arg <- FALSE
}
# new policy for glmmTMB models
if (inherits(model, "glmmTMB") && is.null(vcov_arg)) {
vcov_arg <- TRUE
}
# calculate average predictions
at_list <- lapply(data_grid, unique)
me_args <- list(
model,
variables = at_list[terms],
conf_level = ci_level,
type = type,
df = .get_df(model),
vcov = vcov_arg,
wts = weights
)
prediction_data <- .call_me(
"avg_predictions",
me_args,
dot_args,
include_random = insight::is_mixed_model(model)
)
# return if no predicted values have been computed
if (is.null(prediction_data)) {
return(NULL)
}
# we want a "clear" data frame here
prediction_data <- as.data.frame(prediction_data)
# rename variables, keep predictions and std.error
prediction_data <- .var_rename(
prediction_data,
estimate = "predicted",
group = "response.level"
)
# select variables and merge predictions with data grid
ordered_columns <- intersect(
colnames(prediction_data),
c(terms, "predicted", "std.error", "conf.low", "conf.high", "response.level")
)
prediction_data <- prediction_data[ordered_columns]
# if we have a "response.level", save the row order
if ("response.level" %in% colnames(prediction_data)) {
prediction_data$.row_id <- seq_len(nrow(prediction_data))
}
# merge data grid (values of focal terms) to predictions
prediction_data <- merge(data_grid, prediction_data, all.x = TRUE)
# restore row order
if (!is.null(prediction_data$.row_id)) {
prediction_data <- prediction_data[order(prediction_data$.row_id), ]
prediction_data$.row_id <- NULL
}
# add attributes, needed for plotting etc.
attributes(prediction_data) <- utils::modifyList(attributes(data_grid), attributes(prediction_data))
attr(prediction_data, "std.error") <- prediction_data$std.error
# for avg_predictions, we average over factor levels, so no adjustments here
attributes(prediction_data)$constant.values <- NULL
attributes(data_grid)$constant.values <- NULL
result <- .post_processing_predictions(
model = model,
prediction_data = prediction_data,
original_model_frame = original_model_frame,
cleaned_terms = cleaned_terms,
averaged_predictions = TRUE
)
# check if outcome is log-transformed, and if so,
# back-transform predicted values to response scale
# but first, save original predicted values, to save as attribute
if (back_transform) {
untransformed.predictions <- result$predicted
response.transform <- insight::find_terms(model)[["response"]]
} else {
untransformed.predictions <- response.transform <- NULL
}
result <- .back_transform_response(model, result, back_transform, verbose = verbose)
# add raw data as well
attr(result, "rawdata") <- .back_transform_data(
model,
mydf = .get_raw_data(model, original_model_frame, terms),
back.transform = back_transform
)
attr(result, "model.name") <- model_name
.post_processing_labels(
model = model,
result = result,
original_model_frame = original_model_frame,
data_grid = data_grid,
cleaned_terms = cleaned_terms,
original_terms = original_terms,
model_info = model_info,
type = type,
prediction.interval = FALSE,
at_list = at_list,
condition = condition,
ci.lvl = ci_level,
untransformed.predictions = untransformed.predictions,
back.transform = back_transform,
response.transform = response.transform,
vcov.args = if (isTRUE(vcov_arg)) NULL else vcov_arg,
margin = "empirical",
verbose = verbose
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.