Nothing
#check objfun using finite differences
library(glmm)
data(BoothHobert)
clust <- makeCluster(2)
set.seed(1234)
out<-glmm(y~0+x1,list(y~0+z1),varcomps.names=c("z1"),data=BoothHobert,
family.glmm=bernoulli.glmm,m=50,doPQL=FALSE,debug=TRUE, cluster=clust)
vars <- new.env(parent = emptyenv())
debug<-out$debug
vars$nu.pql<-debug$nu.pql
beta.pql<-debug$beta.pql
vars$family.glmm<-out$family.glmm
vars$umat<-debug$umat
vars$newm <- nrow(vars$umat)
vars$u.star<-debug$u.star
vars$ntrials<- rep(1, length(out$y))
D.star.inv <- Dstarnotsparse <- vars$D.star <- as.matrix(debug$D.star)
vars$m1 <- debug$m1
m2 <- debug$m2
m3 <- debug$m3
vars$zeta <- 5
vars$cl <- out$cluster
registerDoParallel(vars$cl) #making cluster usable with foreach
vars$no_cores <- length(vars$cl)
vars$mod.mcml<-out$mod.mcml
getEk<-glmm:::getEk
addVecs<-glmm:::addVecs
genRand<-glmm:::genRand
simulate <- function(vars, Dstarnotsparse, m2, m3, beta.pql, D.star.inv){
#generate m1 from t(0,D*)
if(vars$m1>0) genData<-rmvt(ceiling(vars$m1/vars$no_cores),sigma=Dstarnotsparse,df=vars$zeta,type=c("shifted"))
if(vars$m1==0) genData<-NULL
#generate m2 from N(u*,D*)
if(m2>0) genData2<-genRand(vars$u.star,vars$D.star,ceiling(m2/vars$no_cores))
if(m2==0) genData2<-NULL
#generate m3 from N(u*,(Z'c''(Xbeta*+zu*)Z+D*^{-1})^-1)
if(m3>0){
Z=do.call(cbind,vars$mod.mcml$z)
eta.star<-as.vector(vars$mod.mcml$x%*%beta.pql+Z%*%vars$u.star)
if(vars$family.glmm$family.glmm=="bernoulli.glmm") {cdouble<-vars$family.glmm$cpp(eta.star)}
if(vars$family.glmm$family.glmm=="poisson.glmm"){cdouble<-vars$family.glmm$cpp(eta.star)}
if(vars$family.glmm$family.glmm=="binomial.glmm"){cdouble<-vars$family.glmm$cpp(eta.star, vars$ntrials)}
#still a vector
cdouble<-Diagonal(length(cdouble),cdouble)
Sigmuh.inv<- t(Z)%*%cdouble%*%Z+D.star.inv
Sigmuh<-solve(Sigmuh.inv)
genData3<-genRand(vars$u.star,Sigmuh,ceiling(m3/vars$no_cores))
}
if(m3==0) genData3<-NULL
# #these are from distribution based on data
# if(distrib=="tee")genData<-genRand(sigma.gen,s.pql,mod.mcml$z,m1,distrib="tee",gamm)
# if(distrib=="normal")genData<-genRand(sigma.pql,s.pql,mod.mcml$z,m1,distrib="normal",gamm)
# #these are from standard normal
# ones<-rep(1,length(sigma.pql))
# zeros<-rep(0,length(s.pql))
# genData2<-genRand(ones,zeros,mod.mcml$z,m2,distrib="normal",gamm)
umat<-rbind(genData,genData2,genData3)
m <- nrow(umat)
list(umat=umat, m=m, Sigmuh.inv=Sigmuh.inv)
}
clusterSetRNGStream(vars$cl, 1234)
clusterExport(vars$cl, c("vars", "Dstarnotsparse", "m2", "m3", "beta.pql", "D.star.inv", "simulate", "genRand"), envir = environment()) #installing variables on each core
noprint <- clusterEvalQ(vars$cl, umatparams <- simulate(vars=vars, Dstarnotsparse=Dstarnotsparse, m2=m2, m3=m3, beta.pql=beta.pql, D.star.inv=D.star.inv))
vars$nbeta <- 1
vars$p1=vars$p2=vars$p3=1/3
if(is.null(out$weights)){
wts <- rep(1, length(out$y))
} else{
wts <- out$weights
}
vars$wts <- as.vector(wts)
par<-c(6,1.5)
del<-rep(10^-9,2)
objfun<-glmm:::objfun
umats <- clusterEvalQ(vars$cl, umatparams$umat)
umat <- Reduce(rbind, umats)
Sigmuh.invs <- clusterEvalQ(vars$cl, umatparams$Sigmuh.inv)
Sigmuh.inv <- Sigmuh.invs[[1]]
Sigmuh <- solve(Sigmuh.inv)
# define a few things that will be used for finite differences
lth<-objfun(par=par, vars=vars)
lthdel<-objfun(par=par+del, vars=vars)
all.equal(as.vector(lth$gradient%*%del),lthdel$value-lth$value)
all.equal(as.vector(lth$hessian%*%del),lthdel$gradient-lth$gradient)
#see exactly how big the difference is
#as.vector(lth$gradient%*%del)-(lthdel$value-lth$value)
#as.vector(lth$hessian%*%del)-(lthdel$gradient-lth$gradient)
#we know these differences are small when we compare it to the actual values
# lthdel$value-lth$value
# as.vector(lth$gradient%*%del)
# as.vector(lth$hessian%*%del)
# lthdel$gradient-lth$gradient
##########################################
##### to make sure that the objfun function is correct, compare it against the version without any C code. here is objfun without c:
objfunNOC <-
function(par,nbeta, nu.pql,umat, u.star=u.star, mod.mcml,family.glmm, cache,gamm,p1,p2,p3, D.star, Sigmuh, zeta, wts){
#print(par)
beta<-par[1:nbeta]
nu<-par[-(1:nbeta)]
D<-nu*diag(10)
D.inv<-(1/nu)*diag(10)
m<-nrow(umat)
if (!missing(cache)) stopifnot(is.environment(cache))
if(missing(cache)) cache<-new.env(parent = emptyenv())
if(sum(nu<=0)>0){
out<-list(value=-Inf,gradient=rep(1,length(par)),hessian=as.matrix(c(rep(1,length(par)^2)),nrow=length(par)))
return(out)
}
Z=do.call(cbind,mod.mcml$z)
eta<-b<-rep(0,m)
lfu<-lfyu<-list(rep(c(0,0,0),m))
lfu.twid<-matrix(data=NA,nrow=m,ncol=4)
D.star.inv<-solve(D.star)
Sigmuh.inv<-solve(Sigmuh)
Dstinvdiag<-diag(D.star.inv)
tconst<-tconstant(zeta,nrow(D.star.inv),Dstinvdiag)
#for each simulated random effect vector
for(k in 1:m){
Uk<-umat[k,] #use the simulated vector as our random effect vec
eta<-mod.mcml$x%*%beta+Z%*%Uk # calculate eta using it
zeros<-rep(0,length(Uk))
#log f_theta(u_k)
lfu[[k]]<-distRand(nu,Uk,mod.mcml$z,zeros)
#log f_theta(y|u_k)
lfyu[[k]]<-elR(mod.mcml$y,mod.mcml$x,eta,family.glmm)
#log f~_theta(u_k)
lfu.twid[k,1]<-tdist2(tconst,Uk,D.star.inv,zeta=zeta,myq=nrow(D.star.inv))
lfu.twid[k,2]<-distRandGeneral(Uk,u.star,D.star.inv)
lfu.twid[k,3]<-distRandGeneral(Uk,u.star,Sigmuh.inv)
tempmax<-max(lfu.twid[k,1:3])
blah<-exp(lfu.twid[k,1:3]-tempmax)
pea<-c(p1,p2,p3)
qux<-pea%*%blah
lfu.twid[k,4]<-tempmax+log(qux)
b[k]<-as.numeric(lfu[[k]]$value)+as.numeric(lfyu[[k]]$value)-lfu.twid[k,4]
}
a<-max(b)
thing<-exp(b-a)
value<-a-log(m)+log(sum(thing))
v<-thing/sum(thing)
#bk are log weights
cache$weights<-exp(b)
Gpiece<-matrix(data=NA,nrow=nrow(umat),ncol=length(par))
#lfuky<-NA
for(k in 1:nrow(umat)){
Gpiece[k,]<-c(lfyu[[k]]$gradient,lfu[[k]]$gradient)*v[k]
#lfuky[k]<-c(lfyu[[k]]$gradient,lfu[[k]]$gradient)
#Gpiece[k,]<-lfuky[k]*v[k]
}
G<-apply(Gpiece,2,sum)
#Hessian has three pieces: panda, lobster, GGT
panda.list<-list()
for(k in 1:nrow(umat)){
panda.list[[k]]<-c(lfyu[[k]]$gradient,lfu[[k]]$gradient)%*%t(c(lfyu[[k]]$gradient,lfu[[k]]$gradient))*v[[k]]
}
panda<-addMats(panda.list)
lobster.list<-list()
for(k in 1:nrow(umat)){
mat1<-lfyu[[k]]$hessian
mat2<-lfu[[k]]$hessian
d1<-nrow(mat1)
d2<-nrow(mat2)
newmat<-matrix(data=0,nrow=d1+d2,ncol=d1+d2)
newmat[1:d1,1:d1]<-mat1
here<-d1+1
there<-d1+d2
newmat[here:there,here:there]<-mat2
lobster.list[[k]]<-newmat*v[k]
}
lobster<-addMats(lobster.list)
hessian<-lobster+panda-G%*%t(G)
list(value=value,gradient=G,hessian=hessian)
}
#here is el without C
elR <-
function(Y,X,eta,family.mcml){
family.mcml<-getFamily(family.mcml)
neta<-length(eta)
ntrials <- rep(1, neta)
if(family.mcml$family.glmm=="bernoulli.glmm"){
foo<-.C(glmm:::C_cum3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1),ntrials=as.integer(ntrials),wts=as.double(wts),cumout=double(1))$cumout
mu<-.C(glmm:::C_cp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1),ntrials=as.integer(ntrials),cpout=double(neta))$cpout
cdub<-.C(glmm:::C_cpp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(1),ntrials=as.integer(ntrials),cppout=double(neta))$cppout
}
if(family.mcml$family.glmm=="poisson.glmm"){
foo<-.C(glmm:::C_cum3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(2),ntrials=as.integer(ntrials),wts=as.double(wts),cumout=double(1))$cumout
mu<-.C(glmm:::C_cp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(2),ntrials=as.integer(ntrials),cpout=double(neta))$cpout
cdub<-.C(glmm:::C_cpp3,eta=as.double(eta),neta=as.integer(neta),type=as.integer(2),ntrials=as.integer(ntrials),cppout=double(neta))$cppout
}
value<-as.numeric(Y%*%eta-foo)
gradient<-t(X)%*%(Y-mu)
cdubmat<-diag(cdub)
hessian<-t(X)%*%(-cdubmat)%*%X
list(value=value,gradient=gradient,hessian=hessian)
}
#here are some other functions we'll need to compare objfun and objfunNOC
getFamily<-glmm:::getFamily
addMats<-glmm:::addMats
tdist2<-function(tconst,u, Dstarinv,zeta,myq){
inside<-1+t(u)%*%Dstarinv%*%u/zeta
logft<-tconst - ((zeta+myq)/2)*log(inside)
as.vector(logft)
}
tconstant<-glmm:::tconstant
distRandGeneral<-function(uvec,mu,Sigma.inv){
logDetSigmaInv<-sum(log(eigen(Sigma.inv,symmetric=TRUE)$values))
umu<-uvec-mu
piece2<-t(umu)%*%Sigma.inv%*%umu
out<-as.vector(.5*(logDetSigmaInv-piece2))
const<-length(uvec)*.5*log(2*pi)
out<-out-const
out
}
distRand <-
function(nu,U,z.list,mu){
# T=number variance components
T<-length(z.list)
#nrandom is q_t
nrand<-lapply(z.list,ncol)
nrandom<-unlist(nrand)
totnrandom<-sum(nrandom)
mu.list<-U.list<-NULL
if(T==1) {
U.list[[1]]<-U
mu.list[[1]]<-mu
}
if(T>1){
U.list[[1]]<-U[1:nrandom[1]]
mu.list[[1]]<-mu[1:nrandom[1]]
for(t in 2:T){
thing1<-sum(nrandom[1:t-1])+1
thing2<-sum(nrandom[1:t])
U.list[[t]]<-U[thing1:thing2]
mu.list[[t]]<-mu[thing1:thing2]
}
}
val<-gradient<-Hessian<-rep(0,T)
#for each variance component
for(t in 1:T){
you<-as.vector(U.list[[t]])
mew<-as.vector(mu.list[[t]])
Umu<-(you-mew)%*%(you-mew)
val[t]<- -length(U)*log(2*pi)/2+as.numeric(-.5*nrandom[t]*log(nu[t])-Umu/(2*nu[t]))
gradient[t]<- -nrandom[t]/(2*nu[t])+Umu/(2*(nu[t])^2)
Hessian[t]<- nrandom[t]/(2*(nu[t])^2)- Umu/((nu[t])^3)
}
value<-sum(val)
if(T>1) hessian<-diag(Hessian)
if(T==1) hessian<-matrix(Hessian,nrow=1,ncol=1)
list(value=value,gradient=gradient,hessian=hessian)
}
#finally, compare objfun and objfunNOC for B+H example
that<-objfunNOC(par=par, nbeta=1, nu.pql=vars$nu.pql, umat=umat, u.star=vars$u.star, mod.mcml=vars$mod.mcml, family.glmm=vars$family.glmm,p1=vars$p1,p2=vars$p2,p3=vars$p3, Sigmuh=Sigmuh,D.star=vars$D.star, zeta=vars$zeta,wts=vars$wts)
all.equal(that,lth)
stopCluster(clust)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.