Nothing
################################################################################
# Genomic prediction of cross performance for YamBase
################################################################################
#Authors: Marlee Labroo, Christine Nyaga, Lukas Mueller
# There are ten main steps to this protocol:
# 1. Load the software needed.
# 2. Declare user-supplied variables.
# 3. Read in the genotype data and convert to numeric allele counts.
# 4. Get the genetic predictors needed.
# 5. Process the phenotypic data.
# 6. Fit the mixed models in sommer.
# 7. Backsolve from individual estimates to marker effect estimates / GBLUP -> RR-BLUP
# 8. Weight the marker effects and add them together to form an index of merit.
# 9. Predict the crosses.
# 10. Format the information needed for output.
# Declare global variables to avoid R CMD check NOTE
utils::globalVariables(c("P1Sex", "P2Sex"))
#' @title Genomic Prediction of Cross Performance
#' This function performs genomic prediction of cross performance using genotype and phenotype data.
#'
#' @param phenotypeFile A data frame containing phenotypic data, typically read from a CSV file.
#' @param genotypeFile Path to the genotypic data, either in VCF or HapMap format.
#' @param genotypes A character string representing the column name in the phenotype file for the genotype IDs.
#' @param traits A string of comma-separated trait names from the phenotype file.
#' @param weights A numeric vector specifying weights for the traits.
#' @param userSexes A string representing the column name corresponding to the individuals' sexes.
#' @param userFixed A string of comma-separated fixed effect variables.
#' @param userRandom A string of comma-separated random effect variables.
#' @param Ploidy An integer representing the ploidy level of the organism.
#' @param NCrosses An integer specifying the number of top crosses to output.
#' @return A data frame containing predicted cross performance.
#' @export
#' @useDynLib gpcp, .registration = TRUE
#' @importFrom Rcpp sourceCpp
#' @importFrom tools file_ext
#' @importFrom magrittr %>%
#' @importFrom VariantAnnotation readVcf
#' @importFrom VariantAnnotation genotypeToSnpMatrix
#' @importFrom methods as
#' @importFrom stats as.formula filter na.omit sd
#' @importFrom utils combn head read.delim
#' @examples
#' # Load phenotype data from CSV
#' phenotypeFile <- read.csv(system.file("extdata", "phenotypeFile.csv", package = "gpcp"))
#' genotypeFile <- system.file("extdata", "genotypeFile_Chr9and11.vcf", package = "gpcp")
#' finalcrosses <- runGPCP(
#' phenotypeFile = phenotypeFile,
#' genotypeFile = genotypeFile,
#' genotypes = "Accession",
#' traits = "YIELD,DMC",
#' weights = c(3, 1),
#' userFixed = "LOC,REP",
#' Ploidy = 2,
#' NCrosses = 150
#' )
#' message(finalcrosses)
runGPCP = function(phenotypeFile, genotypeFile, genotypes, traits,
weights = NA, userSexes = "", userFixed = NA, userRandom = NA, Ploidy = NA, NCrosses = NA) {
# Rcpp::sourceCpp("~/gpcp/R/QuantGenResources/CalcCrossMeans.cpp") # this is called CalcCrossMean.cpp on Github
if (!requireNamespace("snpStats", quietly = TRUE)) {
stop("The 'snpStats' package is required but not installed. Please install it using BiocManager::install('snpStats').")
}
################################################################################
# 2. Declare user-supplied variables
################################################################################
# a. Define path with internal YamBase instructions such that the object 'userGeno'
# is defined as a VCF file of genotypes.
userGeno <- genotypeFile
# b. Define path2 with internal YamBase instructions such that the object 'userPheno'
# is defined as the phenotype file.
userPheno <- phenotypeFile
# c. The user should be able to select their fixed variables from a menu
# of the column names of the userPheno object. The possible interaction terms
# also need to be shown somehow. Then, those strings should be passed
# to this vector, 'userFixed'. Please set userFixed to NA if no fixed effects
# besides f are requested.
# f is automatically included as a fixed effect- a note to the user would be good.
# userFixed <- c()
# userFixed <- c("studyYear") # for testing only
userFixed <- unlist(strsplit(userFixed, split = ",", fixed = T))
# d. The user should be able to select their random variables from a menu
# of the column names of the userPheno object. The possible interaction terms
# also need to be shown somehow. Then, those strings should be passed
# to this vector, 'userRandom'.
# userRandom <- c()
# userRandom <- "blockNumber" # for testing only
if(is.na(userRandom)){
userRandom=NA
} else {
userRandom <- unlist(strsplit(userRandom, split = ",", fixed = T))
}
# e. The user should be able to indicate which of the userPheno column names
# represents individual genotypes identically as they are represented in the VCF
# column names. No check to ensure matching at this stage. This single string
# should be passed to this vector, userID.
userID <- genotypes
#userID <- "germplasmName" # for testing only
# f. The user must indicate the ploidy level of their organism, and the integer
# provided should be passed to the vector 'userPloidy'. CalcCrossMeans.cpp
# currently supports ploidy = {2, 4, 6}. Ideally, the user could select
# their ploidy from a drop-down to avoid errors here, and there would be a note
# that other ploidies are not currently supported. If not, a possible error is
# provided.
userPloidy <- Ploidy
userPloidy <- 2 # for testing only
# if(userPloidy %in% c(2, 4, 6) != TRUE){
# stop("Only ploidies of 2, 4, and 6 are supported currently. \n
# Please confirm your ploidy level is supported.")
# }
# g. The user should be able to select their response variables from a drop-down menu
# of the column names of the userPheno object. Then, those strings should be passed
# to this vector, 'userResponse'.
# userResponse <- c()
# userResponse <- c("YIELD", "DMC", "OXBI") # for testing only
userResponse <- unlist(strsplit(traits, split = ",", fixed = T))
# h. The user must indicate weights for each response. The order of the vector
# of response weights must match the order of the responses in userResponse.
userWeights <- weights
# userWeights <- c(1, 0.8, 0.2) # for YIELD, DMC, and OXBI respectively; for testing only
# userWeights <- as.numeric(unlist(strsplit(weights, split = ",", fixed = T)))
# i. The user can indicate the number of crosses they wish to output.
# The maximum possible is a full diallel.
# userNCrosses <- c()
userNCrosses <- NCrosses # for testing only
# j. The user can (optionally) input the individuals' sexes and indicate the column
# name of the userPheno object which corresponds to sex. The column name
# string should be passed to the 'userSexes' object. If the user does not wish
# to remove crosses with incompatible sexes (e.g. because the information is not available),
# then userSexes should be set to NA.
# userSexes <- c()
# userSexes <- "Sex" # for testing only
# userPheno$Sex <- sample(c("M", "F"), size = nrow(userPheno), replace = TRUE, prob = c(0.7, 0.3)) # for testing only
# Please note that for the test above, sex is sampled randomly for each entry, so the same accession can have
# different sexes. This does not matter for the code or testing.
################################################################################
# 3. Read in the genotype data and convert to numeric allele counts.
################################################################################
# a. The VCF file object 'userGeno' needs to be converted to a numeric matrix
# of allele counts in whic:
# Rownames represent the individual genotype IDs
# Colnames represent the site IDs
# A cell within a given row and column represents the row individual's
# genotype at the site in the column.
# The individual's genotype should be an integer from 0... ploidy to represent
# counts of the alternate allele at the site. Diploid example:
# 0 = homozygous reference
# 1 = heterozygous
# 2 = homozygous alternate
# The genotypes must not contain monomorphic or non-biallelic sites.
# Users need to pre-process their VCF to remove these (e.g. in TASSEL or R)
# I can put an error message into this script if a user tries to input
# monomorphic or biallelic sites which could be communicated through the GUI.
# It's also possible to filter them here.
if (file_ext(genotypeFile) == "vcf") {
message("READING VARIANT FILE ")
# Import VCF with VariantAnnotation package and extract matrix of dosages
myVCF <- VariantAnnotation::readVcf(genotypeFile)
# G <- t(geno(myVCF)$DS) # Individual in row, genotype in column
mat <- VariantAnnotation::genotypeToSnpMatrix(myVCF)
# G <- t(geno(myVCF)$DS) # Individual in row, genotype in column
G <- methods::as(mat$genotypes, "numeric")
G <- G[, colSums(is.na(G)) < nrow(G)]
# TEST temporarily import the genotypes via HapMap:
# source("R/hapMap2numeric.R") # replace and delete
# G <- hapMap2numeric(genotypeFile) # replace and delete
} else {
# accession_names abc abc2 abc3
# marker1 0 0 2
# marker2 1 0 0
# marker3 0 0 0
message("READING DOSAGE FILE ")
GF <- utils::read.delim(genotypeFile)
GD <- GF[, -1]
GM <- as.matrix(GD)
G <- t(GM)
}
# message("G Matrix start --------")
# message(G[1:5, 1:5])
# message("G Matrix end =========")
################################################################################
# 4. Get the genetic predictors needed.
################################################################################
message("GENETIC PREDICTIONS...")
# 4a. Get the inbreeding coefficent, f, as described by Xiang et al., 2016
# The following constructs f as the average heterozygosity of the individual
# The coefficient of f estimated later then needs to be divided by the number of markers
# in the matrix D before adding it to the estimated dominance marker effects
# One unit of change in f represents changing all loci from homozygous to heterozygous
### GC <- G - (userPloidy/2) #this centers G
GC <- G * (userPloidy - G) * (2 / userPloidy)^2 # center at G
f <- rowSums(GC, na.rm = TRUE) / apply(GC, 1, function(x) sum(!is.na(x)))
# Another alternate way to construct f is the total number of heterozygous loci in the individual
# The coefficient of this construction of f does not need to be divided by the number of markers
# It is simply added to each marker dominance effect
# The coefficient of this construction of f represents the average dominance effect of a marker
# One unit of change in f represents changing one locus from homozygous to heterozygous
# f <- rowSums(D, na.rm = TRUE)
message("DISTANCE MATRIX...")
# 4b. Get the additive and dominance relationship matrices following Batista et al., 2021
# https://doi.org/10.1007/s00122-021-03994-w
# Additive: this gives a different result than AGHmatrix VanRaden's Gmatrix
# AGHmatrix: Weights are implemented for "VanRaden" method as described in Liu (2020)?
allele_freq <- colSums(G) / (userPloidy * nrow(G))
W <- t(G) - userPloidy * allele_freq
WWt <- crossprod(W)
denom <- sum(userPloidy * allele_freq * (1 - allele_freq))
A <- WWt / denom
# Check with paper equation:
# w <- G - (userPloidy/2)
# num <- w %*% t(w)
# denom = sum(userPloidy * allele_freq * (1 - allele_freq))
# A2 <- num/denom
# table(A == A2)
# cor(as.vector(A), as.vector(A2)) # 0.9996...
# Dominance or digenic dominance
if (userPloidy == 2) {
D <- AGHmatrix::Gmatrix(G, method = "Su", ploidy = userPloidy, missingValue = NA)
}
if (userPloidy > 2) {
# Digenic dominance
C_matrix <- matrix(length(combn(userPloidy, 2)) / 2,
nrow = nrow(t(G)),
ncol = ncol(t(G))
)
Ploidy_matrix <- matrix(userPloidy,
nrow = nrow(t(G)),
ncol = ncol(t(G))
)
Q <- (allele_freq^2 * C_matrix) -
(Ploidy_matrix - 1) * allele_freq * t(G) +
0.5 * t(G) * (t(G) - 1)
Dnum <- crossprod(Q)
denomDom <- sum(C_matrix[, 1] * allele_freq^2 * (1 - allele_freq)^2)
D <- Dnum / denomDom
}
################################################################################
# 5. Process the phenotypic data.
################################################################################
# write(summary(userPheno), stderr())
# a. Paste f into the phenotype dataframe
message("processing phenotypic data...")
userPheno$f <- f[as.character(userPheno[, userID])]
# b. Scale the response variables.
for (i in 1:length(userResponse)) {
userPheno[, userResponse[i]] <- (userPheno[, userResponse[i]] - mean(userPheno[, userResponse[i]], na.rm = TRUE)) / sd(userPheno[, userResponse[i]], na.rm = TRUE)
}
# c. Paste in a second ID column for the dominance effects.
dominanceEffectCol <- paste(userID, "2", sep = "")
userPheno[, dominanceEffectCol] <- userPheno[, userID]
uniq <- length(sapply(lapply(userPheno, unique), length))
# Additional steps could be added here to remove outliers etc.
################################################################################
# 6. Fit the mixed models in sommer.
################################################################################
message("Fitting mixed model in sommer")
# 6a. Make a list to save the models.
userModels <- list()
for (i in 1:length(userResponse)) {
message(paste("User response: ", userResponse[i]))
# check if fixed effects besides f are requested, then paste together
# response variable and fixed effects
if (!is.na(userFixed[1])) {
fixedEff <- paste(userFixed, collapse = " + ")
fixedEff <- paste(fixedEff, "f", sep = " + ")
fixedArg <- paste(userResponse[i], " ~ ", fixedEff, sep = "")
}
if (is.na(userFixed[1])) {
fixedArg <- paste(userResponse[i], " ~ ", "f")
}
# check if random effects besides genotypic additive and dominance effects
# are requested, then paste together the formula
message("Generating formula...")
if (!is.na(userRandom[1])) {
randEff <- paste(userRandom, collapse = " + ")
ID2 <- paste(userID, 2, sep = "")
randEff2 <- paste("~sommer::vsr(", userID, ", Gu = A) + sommer::vsr(", ID2, ", Gu = D)", sep = "")
randArg <- paste(randEff2, randEff, sep = " + ")
}
if (is.na(userRandom[1])) {
ID2 <- paste(userID, 2, sep = "")
randArg <- paste("~sommer::vsr(", userID, ", Gu = A) + sommer::vsr(", ID2, ", Gu = D)", sep = "")
}
message(paste("Fit mixed GBLUP model...", randArg))
# write(paste("USER PHENO:", userPheno), stderr())
# write(paste("COLNAMES: ", colnames(userPheno)), stderr())
# fit the mixed GBLUP model
myMod <- sommer::mmer(
fixed = stats::as.formula(fixedArg),
random = stats::as.formula(randArg),
rcov = ~units,
getPEV = FALSE,
data = userPheno
)
# save the fit model
userModels[[i]] <- myMod
}
######################################################################################
# 7. Backsolve from individual estimates to marker effect estimates / GBLUP -> RR-BLUP
######################################################################################
# a. Get the matrices and inverses needed
# This is not correct for polyploids yet.
A.G <- G - (userPloidy / 2) # this is the additive genotype matrix (coded -1 0 1 for diploids)
D.G <- 1 - abs(A.G) # this is the dominance genotype matrix (coded 0 1 0 for diploids)
A.T <- A.G %*% t(A.G) ## additive genotype matrix
# inverse; may cause an error sometimes, if so, add a small amount to the diag
epsilon <- 1e-8 # A small value to add to the diagonal
# Try to invert the matrix
A.Tinv <- tryCatch({
solve(A.T) # Try solving normally
}, error = function(e) {
# If there is an error (like singular matrix), add epsilon to diagonal and retry
warning("Matrix is singular; adding small value to diagonal and retrying inversion.")
A.T.reg <- A.T + diag(epsilon, nrow(A.T))
solve(A.T.reg) # Solve the regularized matrix
})
A.TTinv <- t(A.G) %*% A.Tinv # M'%*% (M'M)-
D.T <- D.G %*% t(D.G) ## dominance genotype matrix
## inverse
D.Tinv <- tryCatch({
solve(D.T) # Try solving normally
}, error = function(e) {
# If there is an error (like singular matrix), add epsilon to diagonal and retry
warning("Matrix is singular; adding small value to diagonal and retrying inversion.")
D.T.reg <- D.T + diag(epsilon, nrow(D.T))
solve(D.T.reg) # Solve the regularized matrix
})
D.TTinv <- t(D.G) %*% D.Tinv # M'%*% (M'M)-
# b. Loop through and backsolve to marker effects.
userAddEff <- list() # save them in order
userDomEff <- list() # save them in order
for (i in 1:length(userModels)) {
myMod <- userModels[[i]]
# get the additive and dominance effects out of the sommer list
subMod <- myMod$U
subModA <- subMod[[1]]
subModA <- subModA[[1]]
subModD <- subMod[[2]]
subModD <- subModD[[1]]
# backsolve
addEff <- A.TTinv %*% matrix(subModA[colnames(A.TTinv)], ncol = 1) # these must be reordered to match A.TTinv
domEff <- D.TTinv %*% matrix(subModD[colnames(D.TTinv)], ncol = 1) # these must be reordered to match D.TTinv
# add f coefficient back into the dominance effects
subModf <- myMod$Beta
fCoef <- subModf[subModf$Effect == "f", "Estimate"] # raw f coefficient
fCoefScal <- fCoef / ncol(G) # divides f coefficient by number of markers
dirDomEff <- domEff + fCoefScal
# save
userAddEff[[i]] <- addEff
userDomEff[[i]] <- dirDomEff
}
################################################################################
# 8. Weight the marker effects and add them together to form an index of merit.
################################################################################
ai <- 0
di <- 0
for (i in 1:length(userWeights)) {
ai <- ai + userAddEff[[i]] * userWeights[i]
di <- di + userDomEff[[i]] * userWeights[i]
}
################################################################################
# 9. Predict the crosses.
################################################################################
# If the genotype matrix provides information about individuals for which
# cross prediction is not desired, then the genotype matrix must be subset
# for use in calcCrossMean(). calcCrossMean will return predicted cross
# values for all individuals in the genotype file otherwise.
message("Predict crosses...")
GP <- G[rownames(G) %in% userPheno[, userID], ]
message("GP:")
# message(head(GP))
crossPlan <- calcCrossMean(
GP,
ai,
di,
userPloidy
)
message("Done with calcCrossMean!!!!!!")
################################################################################
# 10. Format the information needed for output.
################################################################################
# Add option to remove crosses with incompatible sexes.
# hash <- new.env(hash = TRUE, parent = emptyenv(), size = 100L)
# assign_hash(userPheno$germplasmName, userPheno$userSexes, hash)
if (userSexes != "") { # "plant sex estimation 0-4"
# !is.na(userSexes) && !is.na(sd(userPheno[, userSexes]))
# Reformat the cross plan
crossPlan <- as.data.frame(crossPlan)
crossPlan <- crossPlan[order(crossPlan[, 3], decreasing = TRUE), ] # orders the plan by predicted merit
crossPlan[, 1] <- rownames(GP)[crossPlan[, 1]] # replaces internal ID with genotye file ID
crossPlan[, 2] <- rownames(GP)[crossPlan[, 2]] # replaces internal ID with genotye file ID
colnames(crossPlan) <- c("Parent1", "Parent2", "CrossPredictedMerit")
# Look up the parent sexes and subset
crossPlan$P1Sex <- userPheno[match(crossPlan$Parent1, userPheno$germplasmName), userSexes] # get sexes ordered by Parent1
crossPlan$P2Sex <- userPheno[match(crossPlan$Parent2, userPheno$germplasmName), userSexes] # get sexes ordered by Parent2
col_repl <- c("P1Sex", "P2Sex")
crossPlan %>% dplyr::filter(P1Sex == 0 | P2Sex == 0) # remove the 0s
crossPlan %>% dplyr::filter(P1Sex == 1 & P2Sex == 1) # remove same sex crosses with score of 1
crossPlan %>% dplyr::filter(P1Sex == 2 & P2Sex == 2) # remove same sex crosses with score of 2
# crossPlan <- crossPlan[crossPlan$P1Sex != crossPlan$P2Sex, ] # remove crosses with same-sex parents
## replace plant sex numbers to male, female etc
crossPlan[col_repl] <- sapply(crossPlan[col_repl], function(x) replace(x, x %in% "NA", "NA"))
crossPlan[col_repl] <- sapply(crossPlan[col_repl], function(x) replace(x, x %in% 1, "Male"))
crossPlan[col_repl] <- sapply(crossPlan[col_repl], function(x) replace(x, x %in% 2, "Female"))
crossPlan[col_repl] <- sapply(crossPlan[col_repl], function(x) replace(x, x %in% 3, "Monoecious male (m>f)"))
crossPlan[col_repl] <- sapply(crossPlan[col_repl], function(x) replace(x, x %in% 4, "Monoecious female(f>m)"))
# subset the number of crosses the user wishes to output
if (nrow(crossPlan)<100) {
finalcrosses = crossPlan
} else {
crossPlan[1:userNCrosses, ]
finalcrosses=crossPlan[1:userNCrosses, ]
}
} else {
# only subset the number of crosses the user wishes to output
crossPlan <- as.data.frame(crossPlan)
crossPlan <- na.omit(crossPlan)
crossPlan <- crossPlan[order(crossPlan[, 3], decreasing = TRUE), ] # orders the plan by predicted merit
crossPlan[, 1] <- rownames(GP)[crossPlan[, 1]] # replaces internal ID with genotye file ID
crossPlan[, 2] <- rownames(GP)[crossPlan[, 2]] # replaces internal ID with genotye file ID
colnames(crossPlan) <- c("Parent1", "Parent2", "CrossPredictedMerit")
## save the best 100 predictions
if (nrow(crossPlan)<100) {
finalcrosses = crossPlan
} else {
crossPlan[1:userNCrosses, ]
finalcrosses=crossPlan[1:userNCrosses, ]
}
}
return(finalcrosses)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.