Nothing
#' Line plot of result_snps objects
#'
#' @param x An object of class result_snps.
#' @param y default value is NA, if specified it should be a vector of names of
#' subject groups i.e. y = c("case","control")
#'
#' @param title title of the plot.
#' @param snp_start select starting position of snps.
#' @param snp_end select ending position of snps.
#' @param ly if TRUE, we have a plotly object and if it is false plot is going to be
#' a ggplot object.
#' @param line_size geom_line size
#' @param ... other variables
#'
#' @return an interactive line plot of result_snps for each case control subjects.
#'
#'@examples
#'\donttest{
#'piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
#'ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
#'genome_data_file <- paste0(tempdir(),"//chr3.gds")
#'phase_data_file <- paste0(tempdir(),"//chr3.vcf")
#'case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
#' # case-control data
#'case_control <- gwid::case_control(case_control_rda = case_control_data_file)
#'names(case_control) #cases and controls group
#'summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
#'case_control$cases[1:3] # first three subject names of cases group
#'# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
#'snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
#'caco = case_control,gwas_generator = TRUE)
#'class(snp_data_gds)
#'names(snp_data_gds)
#'head(snp_data_gds$snps)
#'# read haplotype data (output of beagle)
#'haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
#'class(haplotype_data)
#'names(haplotype_data)
#'dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
#'# read IBD data (output of Refined-IBD)
#'ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
#'class(ibd_data)
#'ibd_data$ibd # refined IBD output
#'ibd_data$res # count number of IBD for each SNP location
#'# plot count of IBD in chromosome 3
#'plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
#'# Further investigate location between 117M and 122M
#'# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
#'plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
#'model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
#'snp_start = 119026294,snp_end = 120613594)
#'class(model_fisher)
#'plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
#'hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
#'snp_start = 119026294,snp_end = 120613594)
#'haplo_freq <- gwid::haplotype_frequency(hap_str)
#'plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
#'nwin = 1, type = "version1",ly = FALSE)
#'}
#' @export
plot.result_snps <- function(x, y = NA, title, snp_start, snp_end, ly = TRUE, line_size = .6, ...) {
snp_pos <- value <- NULL
if (!missing(snp_start) & !missing(snp_end)) {
x <- x[snp_pos >= snp_start & snp_pos <= snp_end]
}
if (!missing(snp_start) & missing(snp_end)) {
x <- x[snp_pos >= snp_start]
}
if (missing(snp_start) & !missing(snp_end)) {
x <- x[snp_pos <= snp_end]
}
if (any(!is.na(y))){
x <- x[case_control %in% y]
}
p <- ggplot2::ggplot(x, ggplot2::aes(x = snp_pos, y = value)) +
ggplot2::geom_line(ggplot2::aes(color = case_control), size = line_size) +
ggplot2::scale_x_continuous("snp position",
labels = paste0(round(quantile(x$snp_pos, seq(0, 1, length.out = 5)) / 10^6), "M"),
breaks = quantile(x$snp_pos, seq(0, 1, length.out = 5))
)
if (missing(title)) {
p <- p + ggplot2::labs(
y = "count",
fill = "case_control"
)
} else {
p <- p + ggplot2::labs(
title = title, y = "count",
fill = "case_control"
)
}
p <- p + ggplot2::theme(legend.title = ggplot2::element_text(size = 10)) + ggplot2::theme(
axis.ticks = ggplot2::element_line(colour = "black"),
panel.grid.major = ggplot2::element_line(
colour = "antiquewhite",
linetype = "dashed"
), panel.grid.minor = ggplot2::element_line(
colour = "antiquewhite",
linetype = "dashed"
), axis.text = ggplot2::element_text(colour = "black"),
plot.title = ggplot2::element_text(face = "bold"),
legend.title = ggplot2::element_text(size = 12),
panel.background = ggplot2::element_rect(
fill = NA,
colour = NA
),
plot.background = ggplot2::element_rect(colour = NA),
legend.key = ggplot2::element_rect(fill = NA),
legend.background = ggplot2::element_rect(fill = NA)
) +
ggplot2::theme(
panel.background = ggplot2::element_rect(colour = NA),
plot.background = ggplot2::element_rect(colour = NA)
) +
ggplot2::scale_colour_brewer(type = "qual", palette = 2)
if (ly == TRUE){
p <- plotly::ggplotly(p, ...)
return(p)
} else {
return(p)
}
}
#' Line plot of gwid objects
#'
#' @param x An object of class gwid. Output of \code{build_gwid} function.
#' @param y default value is NA, if specified it should be a vector of names of
#' subject groups i.e. y = c("case","control")
#'
#' @param title title of the plot.
#' @param plot_type either \dQuote{result_snps} or \dQuote{profile}.
#' @param reference reference group of subjects in which we want to have profile plot.
#' @param ... if plot_type is \dQuote{result_snps} it is optional argument of \code{plot}.
#' if plot_type is \dQuote{profile} we can subset plot based on snp_start and snp_end locations.
#'
#' @return if plot_type is \dQuote{result_snps} an interactive line plot of result_snps for each case control subjects.
#' if plot_type is \dQuote{profile} an interactive profile plot of identity by descent subjects in subset of locations.
#'
#'@examples
#'\donttest{
#'piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
#'ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
#'genome_data_file <- paste0(tempdir(),"//chr3.gds")
#'phase_data_file <- paste0(tempdir(),"//chr3.vcf")
#'case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
#'# case-control data
#'case_control <- gwid::case_control(case_control_rda = case_control_data_file)
#'names(case_control) #cases and controls group
#'summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
#'case_control$cases[1:3] # first three subject names of cases group
#'# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
#'snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
#'caco = case_control,gwas_generator = TRUE)
#'class(snp_data_gds)
#'names(snp_data_gds)
#'head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
#'# read haplotype data (output of beagle)
#'haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
#'class(haplotype_data)
#'names(haplotype_data)
#'dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
#'# read IBD data (output of Refined-IBD)
#'ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
#'class(ibd_data)
#'ibd_data$ibd # refined IBD output
#'ibd_data$res # count number of IBD for each SNP location
#'# plot count of IBD in chromosome 3
#'plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
#'# Further investigate location between 117M and 122M
#'# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
#'plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
#'model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
#'snp_start = 119026294,snp_end = 120613594)
#'class(model_fisher)
#'plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
#'hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
#'snp_start = 119026294,snp_end = 120613594)
#'haplo_freq <- gwid::haplotype_frequency(hap_str)
#'plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
#'nwin = 1, type = "version1",ly = FALSE)
#'}
#' @export
plot.gwid <- function(x, y = NA, title = "number of IBD in each snp", plot_type = c("result_snps", "profile"), reference, ...) {
plot_type <- match.arg(plot_type)
if (plot_type == "profile") {
dots <- list(...)
invisible(ifelse("snp_start" %in% names(dots), assign("snp_start", dots[["snp_start"]]), assign("snp_start", 0)))
invisible(ifelse("snp_end" %in% names(dots), assign("snp_end", dots[["snp_end"]]), assign("snp_end", Inf)))
snp_pos_ind <- which(x$snp_pos >= snp_start & x$snp_pos <= snp_end)
z <- as.matrix(x[[which(unlist(lapply(x, inherits, "profile")))]][[reference]])[, snp_pos_ind]
z <- z[which(rowSums(z) != 0), ]
snp_pos <- x$snp_pos[snp_pos_ind]
plotly::plot_ly(x = snp_pos, z = z, type = "heatmap", colors = "Greys", showscale = FALSE) |>
plotly::layout(title = reference, xaxis = list(title = "Positions"), yaxis = list(title = "Profiles"))
} else {
if (sum(unlist(lapply(x, inherits, "result_snps"))) == 0) {
x$res <- extract(x)
}
plot(x[[which(unlist(lapply(x, inherits, "result_snps")))]], y,
title = title, ...
)
}
}
#' Line plot of gwas objects
#'
#' @param x object of class gwas.
#' @param y default value is NA, if specified it should be a vector of names of
#' subject groups i.e. y = c("case","control")
#' @param title title of the plot.
#' @param ... optional argument of \code{plot}
#'
#' @return an interactive line plot of gwas objects for each case control subjects.
#'
#'@examples
#'\donttest{
#'piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
#'ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
#'genome_data_file <- paste0(tempdir(),"//chr3.gds")
#'phase_data_file <- paste0(tempdir(),"//chr3.vcf")
#'case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
#'# case-control data
#'case_control <- gwid::case_control(case_control_rda = case_control_data_file)
#'names(case_control) #cases and controls group
#'summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
#'case_control$cases[1:3] # first three subject names of cases group
#'# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
#'snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
#'caco = case_control,gwas_generator = TRUE)
#'class(snp_data_gds)
#'names(snp_data_gds)
#'head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
#'# read haplotype data (output of beagle)
#'haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
#'class(haplotype_data)
#'names(haplotype_data)
#'dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
#'# read IBD data (output of Refined-IBD)
#'ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
#'class(ibd_data)
#'ibd_data$ibd # refined IBD output
#'ibd_data$res # count number of IBD for each SNP location
#'# plot count of IBD in chromosome 3
#'plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
#'# Further investigate location between 117M and 122M
#'# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
#'plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
#'model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
#'snp_start = 119026294,snp_end = 120613594)
#'class(model_fisher)
#'plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
#'hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
#'snp_start = 119026294,snp_end = 120613594)
#'haplo_freq <- gwid::haplotype_frequency(hap_str)
#'plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
#'nwin = 1, type = "version1",ly = FALSE)
#'}
#' @export
plot.gwas <- function(x, y = NA, title = "number of snps", ...) {
if (sum(unlist(lapply(x, inherits, "result_snps"))) == 0) {
x$snps <- extract(x)
}
plot(x[[which(unlist(lapply(x, inherits, "result_snps")))]], y,
title = title, ...
)
}
#' Line plot of test_snps objects
#'
#' @param x an object of class test_snps.
#' @param y default value is NA, if specified it should be a vector of names of
#' subject groups i.e. y = c("case","control")
#' @param title title of the plot.
#' @param snp_start select starting position of snps.
#' @param snp_end select ending position of snps.
#' @param ly if `TRUE`, we have a `plotly` object and if it is `FALSE` plot
#' is going to be a `ggplot` object.
#' @param line_size geom_line size
#' @param log_transformation if `TRUE` plot -log10 transformation of p_values.
#' @param QQplot if TRUE, plot QQplot of P-values
#' @param ... other variables
#'
#' @return an interactive line plot of test_snps objects for each case control subjects.
#'
#'@examples
#'\donttest{
#'piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
#'ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
#'genome_data_file <- paste0(tempdir(),"//chr3.gds")
#'phase_data_file <- paste0(tempdir(),"//chr3.vcf")
#'case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
#'# case-control data
#'case_control <- gwid::case_control(case_control_rda = case_control_data_file)
#'names(case_control) #cases and controls group
#'summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
#'case_control$cases[1:3] # first three subject names of cases group
#'# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
#'snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
#'caco = case_control,gwas_generator = TRUE)
#'class(snp_data_gds)
#'names(snp_data_gds)
#'head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
#'# read haplotype data (output of beagle)
#'haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
#'class(haplotype_data)
#'names(haplotype_data)
#'dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
#'# read IBD data (output of Refined-IBD)
#'ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
#'class(ibd_data)
#'ibd_data$ibd # refined IBD output
#'ibd_data$res # count number of IBD for each SNP location
#'# plot count of IBD in chromosome 3
#'plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
#'# Further investigate location between 117M and 122M
#'# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
#'plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
#'model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
#'snp_start = 119026294,snp_end = 120613594)
#'class(model_fisher)
#'plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
#'hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
#'snp_start = 119026294,snp_end = 120613594)
#'haplo_freq <- gwid::haplotype_frequency(hap_str)
#'plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
#'nwin = 1, type = "version1",ly = FALSE)
#'}
#' @export
plot.test_snps <- function(x, y = NA, title, snp_start, snp_end, ly =TRUE,
line_size = .6,log_transformation = TRUE,
QQplot = FALSE,...) {
snp_pos <- value <- NULL
if (!missing(snp_start) & !missing(snp_end)) {
x <- x[snp_pos >= snp_start & snp_pos <= snp_end]
}
if (!missing(snp_start) & missing(snp_end)) {
x <- x[snp_pos >= snp_start]
}
if (missing(snp_start) & !missing(snp_end)) {
x <- x[snp_pos <= snp_end]
}
if (any(!is.na(y))){
x <- x[case_control %in% y]
}
if (QQplot==FALSE){
if (log_transformation){
p <- ggplot2::ggplot(x, ggplot2::aes(x = snp_pos, y = -log10(value))) +
ggplot2::geom_line(ggplot2::aes(color = case_control), size = line_size) +
ggplot2::scale_x_continuous("snp position",
labels = paste0(round(quantile(x$snp_pos, seq(0, 1, length.out = 5)) / 10^6), "M"),
breaks = quantile(x$snp_pos, seq(0, 1, length.out = 5))
) +
ggplot2::labs(y = "-log10 p_values",
fill = "case_control"
)
} else {
p <- ggplot2::ggplot(x, ggplot2::aes(x = snp_pos, y = value)) +
ggplot2::geom_line(ggplot2::aes(color = case_control), size = line_size) +
ggplot2::scale_x_continuous("snp position",
labels = paste0(round(
quantile(x$snp_pos,
seq(0, 1, length.out = 5)) / 10^6),
"M"),
breaks = quantile(x$snp_pos,
seq(0, 1, length.out = 5))
) +
ggplot2::scale_y_log10() +
ggplot2::labs(y = "p_values",
fill = "case_control"
)
}
if (!missing(title)) {
p <- p + ggplot2::labs(
title = title,
fill = "case_control"
)
} else {
p <- p + ggplot2::labs(
fill = "case_control"
)
}
p <- p + ggplot2::theme(legend.title = ggplot2::element_text(size = 10)) +
ggplot2::theme(
axis.ticks = ggplot2::element_line(colour = "black"),
panel.grid.major = ggplot2::element_line(
colour = "antiquewhite",
linetype = "dashed"
), panel.grid.minor = ggplot2::element_line(
colour = "antiquewhite",
linetype = "dashed"
), axis.text = ggplot2::element_text(colour = "black"),
plot.title = ggplot2::element_text(face = "bold"),
legend.title = ggplot2::element_text(size = 12),
panel.background = ggplot2::element_rect(
fill = NA,
colour = NA
),
plot.background = ggplot2::element_rect(colour = NA),
legend.key = ggplot2::element_rect(fill = NA),
legend.background = ggplot2::element_rect(fill = NA)
) +
ggplot2::theme(
panel.background = ggplot2::element_rect(colour = NA),
plot.background = ggplot2::element_rect(colour = NA)
) +
ggplot2::scale_colour_brewer(type = "qual", palette = 2)
if (ly == TRUE){
p <- plotly::ggplotly(p, ...)
return(p)
} else {
return(p)
}
} else {
pvals_list <- lapply(split(x,by="case_control"),
function(dt) dt[[3]])
pvals_list <- pvals_list[sapply(pvals_list, length) > 0]
p <- qqunif_plot(pvals_list,auto.key=list(corner=c(.95,.05)))
return(p)
}
}
#' Two type of line plots for haplotype_structure_frequency objects .
#'
#' @param x an object of class haplotype_structure_frequency
#' @param y default value is NA, if specified it should be a vector of names of
#' subject groups i.e. y = c("case","control")
#' @param type either \dQuote{version1} or \dQuote{version2}
#' @param nwin window number
#' @param ly if `TRUE`, we have a `plotly` object and if it is `FALSE` plot is going to be
#' a `ggplot` object.
#' @param line_size geom_line size
#' @param ... other variables
#' @return an interactive line plot of haplotype_structure_frequency objects for each case control subjects.
#' @examples
#'\donttest{
#'piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
#'ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
#'genome_data_file <- paste0(tempdir(),"//chr3.gds")
#'phase_data_file <- paste0(tempdir(),"//chr3.vcf")
#'case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
#'# case-control data
#'case_control <- gwid::case_control(case_control_rda = case_control_data_file)
#'names(case_control) #cases and controls group
#'summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
#'case_control$cases[1:3] # first three subject names of cases group
#'# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
#'snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
#'caco = case_control,gwas_generator = TRUE)
#'class(snp_data_gds)
#'names(snp_data_gds)
#'head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
#'# read haplotype data (output of beagle)
#'haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
#'class(haplotype_data)
#'names(haplotype_data)
#'dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
#'# read IBD data (output of Refined-IBD)
#'ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
#'class(ibd_data)
#'ibd_data$ibd # refined IBD output
#'ibd_data$res # count number of IBD for each SNP location
#'# plot count of IBD in chromosome 3
#'plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
#'# Further investigate location between 117M and 122M
#'# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
#'plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
#'model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
#'snp_start = 119026294,snp_end = 120613594)
#'class(model_fisher)
#'plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
#'hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
#'snp_start = 119026294,snp_end = 120613594)
#'haplo_freq <- gwid::haplotype_frequency(hap_str)
#'plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
#'nwin = 1, type = "version1",ly = FALSE)
#'}
#' @export
plot.haplotype_structure_frequency <- function(x, y = NA,
type = c("version1", "version2"),
nwin,
ly = TRUE, line_size=.6,...) {
type <- match.arg(type)
structures <- window_number <- n <- NULL
if (any(!is.na(y))){
x <- x[case_control %in% y]
}
if (type == "version1") {
p <- ggplot2::ggplot(x[window_number == nwin, ],
ggplot2::aes(x = structures, y = n,
frame = window_number)) +
ggplot2::geom_line(ggplot2::aes(color = case_control,
group = case_control), size = line_size) +
ggplot2::scale_x_discrete("haplotypes",
label = function(x) strtrim(x, 12)) +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90,
vjust = 0.5,
hjust = 1)) +
ggplot2::labs(
title = "haplotype frequency version 1", y = "number of structures",
fill = "case_control"
)
} else {
p <- ggplot2::ggplot(x[window_number == nwin, ],
ggplot2::aes(x = case_control, y = n,
frame = window_number)) +
ggplot2::geom_line(ggplot2::aes(color = structures, group = structures),
size = line_size) +
ggplot2::scale_x_discrete("structures") +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90,
vjust = 0.5,
hjust = 1)) +
ggplot2::labs(
title = "haplotype frequency version 2", y = "number of structures",
fill = "case_control"
)
}
p <- p + ggplot2::theme(legend.title = ggplot2::element_text(size = 10)) +
ggplot2::theme(
axis.ticks = ggplot2::element_line(colour = "black"),
panel.grid.major = ggplot2::element_line(
colour = "antiquewhite",
linetype = "dashed"
), panel.grid.minor = ggplot2::element_line(
colour = "antiquewhite",
linetype = "dashed"
), axis.text = ggplot2::element_text(colour = "black"),
plot.title = ggplot2::element_text(face = "bold"),
legend.title = ggplot2::element_text(size = 12),
panel.background = ggplot2::element_rect(
fill = NA,
colour = NA
),
plot.background = ggplot2::element_rect(colour = NA),
legend.key = ggplot2::element_rect(fill = NA),
legend.background = ggplot2::element_rect(fill = NA)
) +
ggplot2::theme(
panel.background = ggplot2::element_rect(colour = NA),
plot.background = ggplot2::element_rect(colour = NA)
)
if (type != "version2") {
p <- p + ggplot2::scale_colour_brewer(type = "qual", palette = 2)
}
if (ly == TRUE){
p <- plotly::ggplotly(p)
return(p)
} else {
return(p)
}
}
#' Line plot of haplotype_frequency object
#'
#' @param x an object of class haplotype_frequency
#' @param y default value is `NA`, if specified it should be a vector of names of
#' subject groups i.e. `y = c("case","control")`
#' @param plot_type either \dQuote{result_snps}
#' or \dQuote{"haplotype_structure_frequency"}
#' @param type either \dQuote{version1} or \dQuote{version2}
#' when plot_type is \dQuote{"haplotype_structure_frequency"}
#' @param nwin window number
#' @param ly if TRUE, we have a plotly object and if it is false plot
#' is going to be a ggplot object.
#' @param title title of the plot.
#' @param line_size geom_line size
#' @param ... optional argument of \code{plot}
#' @return an interactive line plot of haplotype_frequency objects for
#' each case control subjects.
#'@examples
#'\donttest{
#'piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",
#'dest = tempdir())
#'ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
#'genome_data_file <- paste0(tempdir(),"//chr3.gds")
#'phase_data_file <- paste0(tempdir(),"//chr3.vcf")
#'case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
#'# case-control data
#'case_control <- gwid::case_control(case_control_rda = case_control_data_file)
#'names(case_control) #cases and controls group
#'summary(case_control)
#'case_control$cases[1:3] # first three subject names of cases group
#'# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
#'snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
#'caco = case_control,gwas_generator = TRUE)
#'class(snp_data_gds)
#'names(snp_data_gds)
#'head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
#'# read haplotype data (output of beagle)
#'haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
#'class(haplotype_data)
#'names(haplotype_data)
#'dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
#'# read IBD data (output of Refined-IBD)
#'ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
#'class(ibd_data)
#'ibd_data$ibd # refined IBD output
#'ibd_data$res # count number of IBD for each SNP location
#'# plot count of IBD in chromosome 3
#'plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
#'# Further investigate location between 117M and 122M
#'# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
#'plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
#'model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
#'snp_start = 119026294,snp_end = 120613594)
#'class(model_fisher)
#'plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
#'hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
#'snp_start = 119026294,snp_end = 120613594)
#'haplo_freq <- gwid::haplotype_frequency(hap_str)
#'plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
#'nwin = 1, type = "version1",ly = FALSE)
#'}
#' @export
plot.haplotype_frequency <- function(x,
y = NA,
plot_type =
c("haplotype_structure_frequency",
"result_snps"),
type = c("version1", "version2"),ly=TRUE,
nwin, title,line_size = .6, ...) {
plot_type <- match.arg(plot_type)
if (plot_type == "haplotype_structure_frequency") {
type <- match.arg(type)
plot(x[[which(unlist(lapply(x, inherits, "haplotype_structure_frequency")))]],
y, type = type, nwin = nwin,ly = ly,line_size=line_size)
} else {
if (!missing(title)) {
plot(x[[which(unlist(lapply(x, inherits, "result_snps")))]], y,
title = title, ly=ly, ...)
} else {
plot(x[[which(unlist(lapply(x, inherits, "result_snps")))]],
y, ly = ly, ...)
}
}
}
qqunif_plot<-function(pvalues,
should.thin=T, thin.obs.places=2, thin.exp.places=2,
xlab=expression(paste("Expected (",-log[10], " p-value)")),
ylab=expression(paste("Observed (",-log[10], " p-value)")),
draw.conf=TRUE, conf.points=1000, conf.col="lightgray", conf.alpha=.05,
already.transformed=FALSE, pch=20, aspect="iso", prepanel=prepanel.qqunif,
par.settings=list(superpose.symbol=list(pch=pch)), ...) {
#error checking
if (length(pvalues)==0) {
stop("pvalue vector is empty, can't draw plot")}
# if(!(class(pvalues)=="numeric" ||
# (class(pvalues)=="list" && all(sapply(pvalues, class)=="numeric")))){
# stop("pvalue vector is not numeric, can't draw plot")}
if(!(inherits(pvalues,what = "numeric") ||
(inherits(pvalues,"list") && all(sapply(pvalues, inherits,"numeric"))))){
stop("pvalue vector is not numeric, can't draw plot")}
if (any(is.na(unlist(pvalues)))) stop("pvalue vector contains NA values, can't draw plot")
if (already.transformed==FALSE) {
if (any(unlist(pvalues)==0)) stop("pvalue vector contains zeros, can't draw plot")
} else {
if (any(unlist(pvalues)<0)) stop("-log10 pvalue vector contains negative values, can't draw plot")
}
grp<-NULL
n<-1
exp.x<-c()
if(is.list(pvalues)) {
nn<-sapply(pvalues, length)
rs<-cumsum(nn)
re<-rs-nn+1
n<-min(nn)
if (!is.null(names(pvalues))) {
grp=factor(rep(names(pvalues), nn), levels=names(pvalues))
names(pvalues)<-NULL
} else {
grp=factor(rep(1:length(pvalues), nn))
}
pvo<-pvalues
pvalues<-numeric(sum(nn))
exp.x<-numeric(sum(nn))
for(i in 1:length(pvo)) {
if (!already.transformed) {
pvalues[rs[i]:re[i]] <- -log10(pvo[[i]])
exp.x[rs[i]:re[i]] <- -log10((rank(pvo[[i]], ties.method="first")-.5)/nn[i])
} else {
pvalues[rs[i]:re[i]] <- pvo[[i]]
exp.x[rs[i]:re[i]] <- -log10((nn[i]+1-rank(pvo[[i]], ties.method="first")-.5)/(nn[i]+1))
}
}
} else {
n <- length(pvalues)+1
if (!already.transformed) {
exp.x <- -log10((rank(pvalues, ties.method="first")-.5)/n)
pvalues <- -log10(pvalues)
} else {
exp.x <- -log10((n-rank(pvalues, ties.method="first")-.5)/n)
}
}
#this is a helper function to draw the confidence interval
panel.qqconf<-function(n, conf.points=1000, conf.col="gray", conf.alpha=.05, ...) {
conf.points = min(conf.points, n-1);
mpts<-matrix(nrow=conf.points*2, ncol=2)
for(i in seq(from=1, to=conf.points)) {
mpts[i,1]<- -log10((i-.5)/n)
mpts[i,2]<- -log10(qbeta(1-conf.alpha/2, i, n-i))
mpts[conf.points*2+1-i,1]<- -log10((i-.5)/n)
mpts[conf.points*2+1-i,2]<- -log10(qbeta(conf.alpha/2, i, n-i))
}
grid::grid.polygon(x=mpts[,1],y=mpts[,2], gp=grid::gpar(fill=conf.col, lty=0), default.units="native")
}
#reduce number of points to plot
if (should.thin==T) {
if (!is.null(grp)) {
thin <- unique(data.frame(pvalues = round(pvalues, thin.obs.places),
exp.x = round(exp.x, thin.exp.places),
grp=grp))
grp = thin$grp
} else {
thin <- unique(data.frame(pvalues = round(pvalues, thin.obs.places),
exp.x = round(exp.x, thin.exp.places)))
}
pvalues <- thin$pvalues
exp.x <- thin$exp.x
}
gc()
prepanel.qqunif= function(x,y,...) {
A = list()
A$xlim = range(x, y)*1.02
A$xlim[1]=0
A$ylim = A$xlim
return(A)
}
#draw the plot
lattice::xyplot(pvalues~exp.x, groups=grp, xlab=xlab, ylab=ylab, aspect=aspect,
prepanel=prepanel, scales=list(axs="i"), pch=pch,
panel = function(x, y, ...) {
if (draw.conf) {
panel.qqconf(n, conf.points=conf.points,
conf.col=conf.col, conf.alpha=conf.alpha)
};
lattice::panel.xyplot(x,y, ...);
lattice::panel.abline(0,1);
}, par.settings=par.settings, ...
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.