Nothing
#'@title Change Finder using ARIMA
#'@description Change-point detection is related to event/trend change detection. Change Finder ARIMA detects change points based on deviations relative to ARIMA model <doi:10.1109/TKDE.2006.1599387>.
#'It wraps the ARIMA model presented in the forecast library.
#'@param sw_size Sliding window size
#'@return `hcp_cf_arima` object
#'@examples
#'library(daltoolbox)
#'
#'#loading the example database
#'data(examples_changepoints)
#'
#'#Using simple example
#'dataset <- examples_changepoints$simple
#'head(dataset)
#'
#'# setting up change point method
#'model <- hcp_cf_arima()
#'
#'# fitting the model
#'model <- fit(model, dataset$serie)
#'
# making detection using hanr_ml
#'detection <- detect(model, dataset$serie)
#'
#'# filtering detected events
#'print(detection[(detection$event),])
#'
#'@export
hcp_cf_arima <- function(sw_size = NULL) {
obj <- harbinger()
obj$sw_size <- sw_size
class(obj) <- append("hcp_cf_arima", class(obj))
return(obj)
}
#'@importFrom forecast auto.arima
#'@importFrom stats residuals
#'@importFrom stats na.omit
#'@export
fit.hcp_cf_arima <- function(obj, serie, ...) {
if(is.null(serie)) stop("No data was provided for computation",call. = FALSE)
serie <- stats::na.omit(serie)
obj$model <- forecast::auto.arima(serie, allowdrift = TRUE, allowmean = TRUE)
order <- obj$model$arma[c(1, 6, 2, 3, 7, 4, 5)]
obj$p <- order[1]
obj$d <- order[2]
obj$q <- order[3]
obj$drift <- (NCOL(obj$model$xreg) == 1) && is.element("drift", names(obj$model$coef))
params <- list(p = obj$p, d = obj$d, q = obj$q, drift = obj$drift)
attr(obj, "params") <- params
if (is.null(obj$sw_size))
obj$sw_size <- max(obj$p, obj$d+1, obj$q)
return(obj)
}
#'@importFrom stats na.omit
#'@importFrom stats residuals
#'@importFrom forecast auto.arima
#'@export
detect.hcp_cf_arima <- function(obj, serie, ...) {
obj <- obj$har_store_refs(obj, serie)
#Adjusting a model to the entire series
model <- tryCatch(
{
forecast::Arima(obj$serie, order=c(obj$p, obj$d, obj$q), include.drift = obj$drift)
},
error = function(cond) {
forecast::auto.arima(obj$serie, allowdrift = TRUE, allowmean = TRUE)
}
)
#Adjustment error on the entire series
res <- stats::residuals(model)
res <- obj$har_residuals(res)
anomalies <- obj$har_outliers_idx(res)
anomalies <- obj$har_outliers_group(anomalies, length(res))
anomalies[1:obj$sw_size] <- FALSE
y <- mas(res, obj$sw_size)
#Adjusting to the entire series
M2 <- forecast::auto.arima(y)
#Adjustment error on the whole window
u <- obj$har_residuals(stats::residuals(M2))
u <- mas(u, obj$sw_size)
cp <- obj$har_outliers_idx(u)
cp <- obj$har_outliers_group(cp, length(u))
cp[1:obj$sw_size] <- FALSE
cp <- c(rep(FALSE, length(res)-length(u)), cp)
detection <- obj$har_restore_refs(obj, anomalies = anomalies, change_points = cp)
return(detection)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.