R/preproc.R

# File preproc.R
# Part of the hydroGOF R package, https://github.com/hzambran/hydroGOF ; 
#                                 https://cran.r-project.org/package=hydroGOF
#                                 http://www.rforge.net/hydroGOF/
# Copyright 2017-2022 Mauricio Zambrano-Bigiarini
# Distributed under GPL 2 or later

################################################################################
# 'preproc': It applies a user-defined function to simulated and observed      #
#            values before computing any goodness-of-fit function, probably    #
#            adding a user-defined (and small) 'epsilon' value in order to     #
#            allow the use of logarithm and other similar functions that do    #
#            not work with zero values                                         #
################################################################################
# Author: Mauricio Zambrano-Bigiarini                                          #
################################################################################
# Reference: Pushpalatha, R., Perrin, C., Le Moine, N., & Andreassian, V.      #
#            (2012). A review of efficiency criteria suitable for evaluating   #
#            low-flow simulations. Journal of Hydrology, 420, 171-182.         #
#            DOI: 10.1016/j.jhydrol.2011.11.055                                #
################################################################################
# Started: 29-Jun-2017                                                         #
# Updates: 11-Jul-2022 ; 12-Jul-2022 ; 13-Jul-2022                             #
################################################################################
# 'sim'     : numeric, with simulated values
# 'obs'     : numeric, with observed values
# 'fun'     : function to be applied to 'sim' and 'obs' in order to obtain 
#             transformed values thereof before applying any goodness-of-fit 
#             function included in the hydroGOF package
# '...'     : additional argument to be passed to fun
# 'epsilon.type' : argument used to define a numeric value to be added to both 'sim' 
#                  and 'obs' before applying fun. It is was  designed to allow the 
#                  use of logarithm and other similar functions that do not work with 
#                  zero values. It must be one of the following three possible values:
#             -) "Pushpalatha2012": one hundredth of the mean observed values is 
#                                   added to both 'sim' and 'obs', as described  
#                                   in Pushpalatha et al., (2012). 
#             -) "otherFactor"    : the numeric value defined in the \code{epsilon.value} 
#                                   argument is used to multiply the the mean 
#                                   observed values, instead of the 
#                                   one hundredth (1/100) described in Pushpalatha et al. (2012). 
#                                   The resulting value is then added to both 
#                                   \code{sim} and \code{obs}.
#             -) "otherValue"     : the numeric value defined in the 'epsilon.value'
#                                   argument is directly added to both 'sim' and 'obs'

# 'epsilon.value': numeric value to be added to both 'sim' and 'obs' when 
#                  'epsilon="other"'

# 'Output': a list with two numeric vectors:
#           1) 'sim': simulated values after adding 'epsilon.value' and 
#                     applying 'fun' 
#           2) 'obs': observed values after adding 'epsilon.value' and 
#                     applying 'fun' 
preproc <- function (sim, obs, na.rm=TRUE, fun,  ..., 
                     epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"), 
                     epsilon.value=0) { 

   # fun ?
   fun.exists <- FALSE
   if (!missing(fun)) {
     fun.exists <- TRUE
     fun        <- match.fun(fun)
   } # IF end

   # epsilon.type ?
   epsilon.type <- match.arg(epsilon.type)

   if (epsilon.type %in% c("otherFactor", "otherValue") )  {
     if (is.na(epsilon.value))
       stop("Missing argument: you need to provide 'epsilon.value' !")

     if ( !is.numeric(epsilon.value) )
       stop("Invalid argument: 'epsilon.value' must be numeric !")
   } # IF end

   # epsilon.value 
   if (epsilon.type != "none") {
     if (epsilon.type=="Pushpalatha2012") {    
       epsilon.value <- (1/100)*mean(obs, na.rm=na.rm)
     } else if (epsilon.type=="otherFactor") {
         epsilon.value <- epsilon.value*mean(obs, na.rm=na.rm)
       } # ELSE (epsilon="otherValue"): epsilon.value=epsilon.value
   } else epsilon.value <- 0

   # Adding epsilon, before applying fun
   obs <- obs + epsilon.value
   sim <- sim + epsilon.value

   # using fun (and 'epsilon.value')
   if (fun.exists) {
     obs.bak <- obs
     sim.bak <- sim

     obs <- fun( obs, ...)     
     sim <- fun( sim, ...)

     if (length(obs) != length(obs.bak))
        stop("Invalid argument: 'fun' returns an object with a length different from 'obs' or 'sim' !")
   } # IF 'fun.exists' end
     
   out <- list(sim=sim, obs=obs)
     
   return(out)

} # 'preproc' END

Try the hydroGOF package in your browser

Any scripts or data that you put into this service are public.

hydroGOF documentation built on Nov. 4, 2024, 5:08 p.m.