conditional_dependence: Conditional Dependence Profiles

View source: R/conditional_dependence.R

conditional_dependenceR Documentation

Conditional Dependence Profiles

Description

Conditional Dependence Profiles (aka Local Profiles) average localy Ceteris Paribus Profiles. Function 'conditional_dependence' calls 'ceteris_paribus' and then 'aggregate_profiles'.

Usage

conditional_dependence(x, ...)

## S3 method for class 'explainer'
conditional_dependence(
  x,
  variables = NULL,
  N = 500,
  variable_splits = NULL,
  grid_points = 101,
  ...,
  variable_type = "numerical"
)

## Default S3 method:
conditional_dependence(
  x,
  data,
  predict_function = predict,
  label = class(x)[1],
  variables = NULL,
  N = 500,
  variable_splits = NULL,
  grid_points = 101,
  ...,
  variable_type = "numerical"
)

## S3 method for class 'ceteris_paribus_explainer'
conditional_dependence(x, ..., variables = NULL)

local_dependency(x, ...)

conditional_dependency(x, ...)

Arguments

x

an explainer created with function DALEX::explain(), an object of the class ceteris_paribus_explainer or a model to be explained.

...

other parameters

variables

names of variables for which profiles shall be calculated. Will be passed to calculate_variable_split. If NULL then all variables from the validation data will be used.

N

number of observations used for calculation of partial dependence profiles. By default 500.

variable_splits

named list of splits for variables, in most cases created with calculate_variable_split. If NULL then it will be calculated based on validation data avaliable in the explainer.

grid_points

number of points for profile. Will be passed to calculate_variable_split.

variable_type

a character. If "numerical" then only numerical variables will be calculated. If "categorical" then only categorical variables will be calculated.

data

validation dataset, will be extracted from x if it's an explainer NOTE: It is best when target variable is not present in the data

predict_function

predict function, will be extracted from x if it's an explainer

label

name of the model. By default it's extracted from the class attribute of the model

Details

Find more details in the Accumulated Local Dependence Chapter.

Value

an object of the class aggregated_profile_explainer

References

Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/

Examples

library("DALEX")
library("ingredients")

model_titanic_glm <- glm(survived ~ gender + age + fare,
                         data = titanic_imputed, family = "binomial")

explain_titanic_glm <- explain(model_titanic_glm,
                               data = titanic_imputed[,-8],
                               y = titanic_imputed[,8],
                               verbose = FALSE)

cdp_glm <- conditional_dependence(explain_titanic_glm,
                                  N = 150, variables = c("age", "fare"))
head(cdp_glm)
plot(cdp_glm)


library("ranger")

model_titanic_rf <- ranger(survived ~., data = titanic_imputed, probability = TRUE)

explain_titanic_rf <- explain(model_titanic_rf,
                              data = titanic_imputed[,-8],
                              y = titanic_imputed[,8],
                              label = "ranger forest",
                              verbose = FALSE)

cdp_rf <- conditional_dependence(explain_titanic_rf, N = 200, variable_type = "numerical")
plot(cdp_rf)

cdp_rf <- conditional_dependence(explain_titanic_rf, N = 200, variable_type = "categorical")
plotD3(cdp_rf, label_margin = 100, scale_plot = TRUE)



ingredients documentation built on Jan. 15, 2023, 5:09 p.m.