plotD3.aggregated_profiles_explainer | R Documentation |
Function plotD3.aggregated_profiles_explainer
plots an aggregate of ceteris paribus profiles.
It works in a similar way to plotD3.ceteris_paribus_explainer
but, instead of individual profiles,
show average profiles for each variable listed in the variables
vector.
Find more details in Ceteris Paribus Chapter.
## S3 method for class 'aggregated_profiles_explainer' plotD3( x, ..., size = 2, alpha = 1, color = "#46bac2", facet_ncol = 2, scale_plot = FALSE, variables = NULL, chart_title = "Aggregated Profiles", label_margin = 60 )
x |
a aggregated profiles explainer produced with function |
... |
other explainers that shall be plotted together |
size |
a numeric. Set width of lines |
alpha |
a numeric between |
color |
a character. Set line/bar color |
facet_ncol |
number of columns for the |
scale_plot |
a logical. If |
variables |
if not |
chart_title |
a character. Set custom title |
label_margin |
a numeric. Set width of label margins in |
a r2d3
object.
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
library("DALEX") library("ingredients") library("ranger") # smaller data, quicker example titanic_small <- select_sample(titanic_imputed, n = 500, seed = 1313) # build a model model_titanic_rf <- ranger(survived ~., data = titanic_small, probability = TRUE) explain_titanic_rf <- explain(model_titanic_rf, data = titanic_small[,-8], y = titanic_small[,8], label = "ranger forest", verbose = FALSE) selected_passangers <- select_sample(titanic_small, n = 100) cp_rf <- ceteris_paribus(explain_titanic_rf, selected_passangers) pdp_rf_p <- aggregate_profiles(cp_rf, type = "partial", variable_type = "numerical") pdp_rf_p$`_label_` <- "RF_partial" pdp_rf_c <- aggregate_profiles(cp_rf, type = "conditional", variable_type = "numerical") pdp_rf_c$`_label_` <- "RF_conditional" pdp_rf_a <- aggregate_profiles(cp_rf, type = "accumulated", variable_type = "numerical") pdp_rf_a$`_label_` <- "RF_accumulated" plotD3(pdp_rf_p, pdp_rf_c, pdp_rf_a, scale_plot = TRUE) pdp <- aggregate_profiles(cp_rf, type = "partial", variable_type = "categorical") pdp$`_label_` <- "RF_partial" plotD3(pdp, variables = c("gender","class"), label_margin = 70)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.