View source: R/plot_ceteris_paribus_2d.R
plot.ceteris_paribus_2d_explainer | R Documentation |
This function plots What-If Plots for a single prediction / observation.
## S3 method for class 'ceteris_paribus_2d_explainer' plot( x, ..., facet_ncol = NULL, add_raster = TRUE, add_contour = TRUE, bins = 3, add_observation = TRUE, pch = "+", size = 6 )
x |
a ceteris paribus explainer produced with the |
... |
currently will be ignored |
facet_ncol |
number of columns for the |
add_raster |
if |
add_contour |
if |
bins |
number of contours to be added |
add_observation |
if |
pch |
character, symbol used to plot observations |
size |
numeric, size of individual datapoints |
a ggplot2
object
Explanatory Model Analysis. Explore, Explain, and Examine Predictive Models. https://ema.drwhy.ai/
library("DALEX") library("ingredients") library("ranger") apartments_rf_model <- ranger(m2.price ~., data = apartments) explainer_rf <- explain(apartments_rf_model, data = apartments_test[,-1], y = apartments_test[,1], verbose = FALSE) new_apartment <- apartments_test[1,] new_apartment wi_rf_2d <- ceteris_paribus_2d(explainer_rf, observation = new_apartment) head(wi_rf_2d) plot(wi_rf_2d) plot(wi_rf_2d, add_contour = FALSE) plot(wi_rf_2d, add_observation = FALSE) plot(wi_rf_2d, add_raster = FALSE) # HR data model <- ranger(status ~ gender + age + hours + evaluation + salary, data = HR, probability = TRUE) pred1 <- function(m, x) predict(m, x)$predictions[,1] explainer_rf_fired <- explain(model, data = HR[,1:5], y = as.numeric(HR$status == "fired"), predict_function = pred1, label = "fired") new_emp <- HR[1,] new_emp wi_rf_2d <- ceteris_paribus_2d(explainer_rf_fired, observation = new_emp) head(wi_rf_2d) plot(wi_rf_2d)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.