Nothing
#' @title Gorilla nesting sites in sf format
#' @docType data
#' @description This is the `gorillas` dataset from the package `spatstat.data`,
#' reformatted as point process data for use with `inlabru`.
#'
#' @usage
#' gorillas_sf
#' data(gorillas_sf, package = "inlabru")
#'
#' @format The data are a list that contains these elements:
#' \describe{
#' \item{`nests`:}{ An `sf` object containing the locations of
#' the gorilla nests.}
#' \item{`boundary`:}{ An `sf` object defining the boundary
#' of the region that was searched for the nests.}
#' \item{`mesh`:}{ An `fm_mesh_2d` object containing a mesh that can be used
#' with function `lgcp` to fit a LGCP to the nest data.}
#' \item{`gcov_file`:}{ The in-package filename of a `terra::SpatRaster`
#' object, with one layer for each of these spatial covariates:
#' \describe{
#' \item{`aspect`}{ Compass direction of the terrain slope. Categorical,
#' with levels
#' N, NE, E, SE, S, SW, W and NW, which are coded as integers 1 to 8.}
#' \item{`elevation`}{ Digital elevation of terrain, in metres.}
#' \item{`heat`}{ Heat Load Index at each point on the surface
#' (Beer's aspect),
#' discretised. Categorical with values Warmest (Beer's aspect between
#' 0 and 0.999),
#' Moderate (Beer's aspect between 1 and 1.999), Coolest (Beer's aspect
#' equals 2). These are
#' coded as integers 1, 2 and 3, in that order.}
#' \item{`slopangle`}{ Terrain slope, in degrees.}
#' \item{`slopetype`}{ Type of slope. Categorical, with values Valley,
#' Toe (toe slope),
#' Flat, Midslope, Upper and Ridge. These are coded as integers 1 to 6.}
#' \item{`vegetation`}{ Vegetation type: a categorical variable with 6
#' levels coded as
#' integers 1 to 6 (in order of increasing expected habitat suitability)}
#' \item{`waterdist`}{ Euclidean distance from nearest water body, in
#' metres.}
#' }
#' Loading of the covariates can be done with `gorillas_sf_gcov()` or
#'
#' gorillas_sf$gcov <- terra::rast(
#' system.file(gorillas_sf$gcov_file, package = "inlabru")
#' )
#'
#' }
#' \item{`plotsample`}{Plot sample of gorilla nests, sampling 9x9 over the
#' region, with 60\% coverage. Components:
#' \describe{
#' \item{`counts`}{An `sf` object with elements
#' `count`, `exposure`, and `geometry`, holding the point geometry for the
#' centre of each plot, the count in each
#' plot and the area of each plot.}
#' \item{`plots`}{An `sf` object with `MULTIPOLYGON` objects defining the
#' individual plot boundaries and an all-ones `weight` column.}
#' \item{`nests`}{An `sf` giving the locations of
#' each detected nests, `group` ("minor" or "major"),
#' `season` ("dry" or "rainy"), and `date` (in `Date` format).}
#' }
#' }
#' }
#' @source
#' Library `spatstat.data`.
#'
#'
#' @references
#' Funwi-Gabga, N. (2008) A pastoralist survey and fire impact assessment in the
#' Kagwene Gorilla Sanctuary, Cameroon. M.Sc. thesis, Geology and Environmental
#' Science, University of Buea, Cameroon.
#'
#' Funwi-Gabga, N. and Mateu, J. (2012) Understanding the nesting spatial
#' behaviour of gorillas in the Kagwene Sanctuary, Cameroon. Stochastic
#' Environmental Research and Risk Assessment 26 (6), 793-811.
#'
#' @examples
#' if (interactive() &&
#' bru_safe_inla() &&
#' bru_safe_sp() &&
#' require("sp") &&
#' require(ggplot2, quietly = TRUE) &&
#' requireNamespace("terra", quietly = TRUE)) {
#' # plot all the nests, mesh and boundary
#' ggplot() +
#' gg(gorillas_sf$mesh) +
#' geom_sf(
#' data = gorillas_sf$boundary,
#' alpha = 0.1, fill = "blue"
#' ) +
#' geom_sf(data = gorillas_sf$nests)
#'
#' # Plot the elevation covariate
#' gorillas_sf$gcov <- terra::rast(
#' system.file(gorillas_sf$gcov_file, package = "inlabru")
#' )
#' plot(gorillas_sf$gcov$elevation)
#'
#' # Plot the plot sample
#' ggplot() +
#' geom_sf(data = gorillas_sf$plotsample$plots) +
#' geom_sf(data = gorillas_sf$plotsample$nests)
#' }
"gorillas_sf"
#' @describeIn gorillas_sf Access the `gorillas_sf` covariates data as a
#' `terra::rast()` object.
#' @export
#' @examples
#' \dontrun{
#' if (requireNamespace("terra", quietly = TRUE)) {
#' gorillas_sf$gcov <- gorillas_sf_gcov()
#' }
#' }
gorillas_sf_gcov <- function() {
requireNamespace("terra")
terra::rast(system.file(inlabru::gorillas_sf$gcov_file, package = "inlabru"))
}
#' @describeIn gorillas_sf Access the `gorillas_sf` data in `sp` format.
#' The covariate data is added as `gcov`, a list of `sp::SpatialPixelsDataFrame`
#' objects. Requires the `sp`, `sf`, and `terra` packages to be installed.
#' @export
gorillas_sp <- function() {
requireNamespace("sf")
requireNamespace("terra")
stopifnot(bru_safe_sp())
dat <- inlabru::gorillas_sf
gcov <- gorillas_sf_gcov()
gcov_ <- as.data.frame(gcov, xy = TRUE)
gcov_sp <- list()
for (nm in names(gcov)) {
gcov_sp[[nm]] <- sp::SpatialPixelsDataFrame(
cbind(gcov_$x, gcov_$y),
data = gcov_[, nm, drop = FALSE],
proj4string = fm_CRS(gcov)
)
}
out <- list(
nests = sf::as_Spatial(dat$nests),
mesh = dat$mesh,
boundary = sf::as_Spatial(dat$boundary),
plotsample = list(
counts = sf::as_Spatial(dat$plotsample$counts),
plots = sf::as_Spatial(dat$plotsample$plots),
nests = sf::as_Spatial(dat$plotsample$nests)
),
gcov = gcov_sp
)
out
}
#' @title Deprecated alias for sp version of the gorillas dataset
#' @name gorillas
#' @rdname gorillas
#' @description
#' Deprecated dataset name for the `sp` version
#' of [gorillas_sf]. Use [gorillas_sp()] instead.
#' @seealso [gorillas_sf]
#' @keywords internal
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.