Nothing
intsvy.reg.pv <-
function(x, pvnames, by, data, std=FALSE, export=FALSE, name= "output", folder=getwd(), config) {
# Remove missing data in IVs
data <- data[complete.cases(data[, x]), ]
reg.pv.input <- function(x, pvnames, data, std, config) {
if (any(sapply(data[x], function(i) all(duplicated(i))))) {
results <- list("replicates"=NA, "residuals"= NA, "var.w"=NA, "var.b"=NA, "reg"=NA)
return(results)
}
# JK with weight variables
if (config$parameters$weights == "JK with weights") {
#pvnames <- paste0("^", config$variables$pvlabelpref, "*[0-9].*", pvnames)
#pvnames <- grep(pvnames, names(data), value = TRUE)
weights <- grep(paste0("^", config$variables$weightJK , ".*[0-9]+$"),
names(data), value = TRUE)
# remove missings in pvalues and weights
data <- data[complete.cases(data[, c(pvnames[1], weights[1], config$variables$weight)]), ]
# data is empty
if (sum(is.na((data[[pvnames[1]]])))==length(data[[pvnames[1]]])) {
result <- data.frame(NA, "Freq"=0, "Percentage"=NA, "Std.err."= NA)
names(result)[1] <- pvnames[1]
return(result)
}
# List of formulas for each PV
regform <- lapply(pvnames, function(i) paste(i, "~", paste(x, collapse="+")))
# Replicate weighted coefficients for sampling error
reg.rep <- lapply(1:length(pvnames), function(m) lapply(1:length(weights), function(i)
summary(lm(formula=as.formula(regform[[m]]), data=data, weights=data[[weights[i]]]))))
# Combining coefficients and R-squared replicates
coe.rep <- lapply(1:length(pvnames), function(m)
sapply(1:length(weights), function(i)
c(reg.rep[[m]][[i]]$coefficients[,1], "R-squared"= reg.rep[[m]][[i]]$r.squared)))
resid <- lapply(1:length(pvnames), function(m)
sapply(1:length(weights), function(rep) reg.rep[[m]][[rep]]$residuals))
# Total weighted coefficient for each PV for imputation (between) error
reg.pv <- lapply(regform, function(i)
summary(lm(formula=as.formula(i), data=data, weights=data[[config$variables$weight]])))
coe.tot <- sapply(1:length(pvnames), function(pv)
c(reg.pv[[pv]]$coefficients[, 1], "R-squared" = reg.pv[[pv]]$r.squared))
# Mean total coefficients (across PVs)
stat.tot <- apply(coe.tot, 1, mean)
# Sampling error (variance within)
var.w <- mean(sapply(1:length(pvnames), function(m) apply((coe.rep[[m]]-coe.tot[,m])^2, 1, sum)))
# Imputation error (variance between)
var.b <- (1+1/length(pvnames))*apply(coe.tot, 1, var)
stat.se <- (var.w + var.b)^(1/2)
stat.t <- stat.tot/stat.se
# Reg Table
reg.tab <- data.frame("Estimate"=stat.tot, "Std. Error"=stat.se, "t value"=stat.t, check.names=F)
results <- list("replicates"=coe.rep, "residuals"= resid, "var.w"=var.w, "var.b"=var.b, "reg"=reg.tab)
return(results)
}
# BRR / JK
if (config$parameters$weights == "BRR") {
# balanced repeated replication
# Replicate weighted %s (sampling error)
# in PISA
#pvnames <- paste0(pvnames, ".*[0-9]|[0-9].*", pvnames)
#pvnames <- grep(pvnames, names(data), value = TRUE)
weights <- grep(paste0("^", config$variables$weightBRR , ".*[0-9]+$"),
names(data), value = TRUE)
# remove missings in pvalues and weights
data <- data[complete.cases(data[, c(pvnames[1], weights[1], config$variables$weightFinal)]), ]
# List of formulas for each PV
regform <- lapply(pvnames, function(i) paste(i, "~", paste(x, collapse="+")))
# Standardise IV and DV variables
if(std) {
data <- cbind(scale(data[c(pvnames, x)]), data[!names(data) %in% c(pvnames, x)])
}
# Replicate weighted coefficients for sampling error (PVs)
reg.rep <- lapply(regform, function(pv) lapply(1:length(weights), function(rep)
summary(lm(formula=as.formula(pv), data=data, weights=data[[weights[rep]]]))))
# Combining coefficients and R-squared replicates
coe.rep <- lapply(1:length(pvnames), function(pv) sapply(1:length(weights), function(rep)
c(reg.rep[[pv]][[rep]]$coefficients[,1], "R-squared"= reg.rep[[pv]][[rep]]$r.squared)))
resid <- lapply(1:length(pvnames), function(pv)
sapply(1:length(weights),
function(rep) reg.rep[[pv]][[rep]]$residuals))
# Total weighted coefficient for each PV for imputation (between) error
reg.pv <- lapply(regform, function(pv)
summary(lm(formula=as.formula(pv), data=data, weights=data[[config$variables$weightFinal]])))
coe.tot <- sapply(1:length(pvnames), function(pv)
c(reg.pv[[pv]]$coefficients[, 1], "R-squared" = reg.pv[[pv]]$r.squared))
# Mean total coefficients (across PVs)
stat.tot <- apply(coe.tot, 1, mean)
# Sampling error (variance within)
cc = 1/(length(weights)*(1-0.5)^2)
var.w <- apply(cc*sapply(lapply(1:length(pvnames), function(pv)
(coe.rep[[pv]]-coe.tot[,pv])^2), function(e) apply(e, 1, sum)), 1, mean)
# Imputation error (variance between)
var.b <- (1/(length(pvnames)-1))*apply(sapply(1:length(pvnames), function(pv)
(coe.tot[, pv] - stat.tot)^2), 1, sum)
stat.se <- (var.w +(1+1/length(pvnames))*var.b)^(1/2)
stat.t <- stat.tot/stat.se
# Reg Table
reg.tab <- data.frame("Estimate"=stat.tot, "Std. Error"=stat.se, "t value"=stat.t, check.names=F)
results <- list("replicates"=lapply(coe.rep, t), "residuals"= resid, "var.w"=var.w, "var.b"=var.b, "reg"=reg.tab)
return(results)
}
if (config$parameters$weights == "JK") {
# jack knife
# in PIRLS / TIMSS
#pvnames <- grep(pvnames, names(data), value = TRUE)
# List of formulas for each PV
regform <- lapply(pvnames, function(i) paste(i, "~", paste(x, collapse="+")))
# Standardise IV and DV variables
if(std) {
data <- cbind(scale(data[c(pvnames, x)]), data[!names(data) %in% c(pvnames, x)])
}
R.wt <- sapply(1:max(data[[config$variables$jackknifeZone]]), function(x)
ifelse(data[[config$variables$jackknifeZone]] == x,
2*data[[config$variables$weight]]*data[[config$variables$jackknifeRep]], data[[config$variables$weight]]))
if (isTRUE(config$parameters$varpv1)) {
# Replicate weighted coefficients for sampling error (PV1 only)
reg.rep <- lapply(1:ncol(R.wt), function(i)
summary(lm(formula=as.formula(regform[[1]]), data=data, weights=R.wt[, i])))
# Combining coefficients and R-squared replicates
coe.rep <- sapply(1:max(data[[config$variables$jackknifeZone]]), function(i)
c(reg.rep[[i]]$coefficients[,1], "R-squared"= reg.rep[[i]]$r.squared))
resid <- sapply(1:length(reg.rep), function(rep) reg.rep[[rep]]$residuals)
# Total weighted coefficient for each PV for imputation (between) error
reg.pv <- lapply(regform, function(i)
summary(lm(formula=as.formula(i), data=data, weights=data[[config$variables$weight]])))
coe.tot <- sapply(1:length(pvnames), function(pv)
c(reg.pv[[pv]]$coefficients[, 1], "R-squared" = reg.pv[[pv]]$r.squared))
# Mean total coefficients (across PVs)
stat.tot <- apply(coe.tot, 1, mean)
# Sampling error for PV1 (variance within)
var.w <- apply((coe.rep-coe.tot[,1])^2, 1, sum)
# Imputation error (variance between)
var.b <- (1+1/length(pvnames))*apply(coe.tot, 1, var)
stat.se <- (var.w + var.b)^(1/2)
stat.t <- stat.tot/stat.se
} else {
R.wt2 <- sapply(1:max(data[[config$variables$jackknifeZone]]), function(x)
ifelse(data[[config$variables$jackknifeZone]] == x,
2*data[[config$variables$weight]]*ifelse(data[[config$variables$jackknifeRep]]==1,0,1), data[[config$variables$weight]]))
R.wt <- cbind(R.wt, R.wt2)
# Replicate weighted coefficients for sampling error
reg.rep <- lapply(1:length(pvnames), function(m) lapply(1:ncol(R.wt), function(i)
summary(lm(formula=as.formula(regform[[m]]), data=data, weights=R.wt[, i]))))
# Combining coefficients and R-squared replicates
coe.rep <- lapply(1:length(pvnames), function(m)
sapply(1:ncol(R.wt), function(i)
c(reg.rep[[m]][[i]]$coefficients[,1], "R-squared"= reg.rep[[m]][[i]]$r.squared)))
resid <- lapply(1:length(pvnames), function(m)
sapply(1:ncol(R.wt), function(rep) reg.rep[[m]][[rep]]$residuals))
# Total weighted coefficient for each PV for imputation (between) error
reg.pv <- lapply(regform, function(i)
summary(lm(formula=as.formula(i), data=data, weights=data[[config$variables$weight]])))
coe.tot <- sapply(1:length(pvnames), function(pv)
c(reg.pv[[pv]]$coefficients[, 1], "R-squared" = reg.pv[[pv]]$r.squared))
# Mean total coefficients (across PVs)
stat.tot <- apply(coe.tot, 1, mean)
# Sampling error (variance within)
var.w <- apply(sapply(1:length(pvnames), function(m) apply((coe.rep[[m]]-coe.tot[,m])^2, 1, sum)/2), 1, mean)
# Imputation error (variance between)
var.b <- (1+1/length(pvnames))*apply(coe.tot, 1, var)
stat.se <- (var.w + var.b)^(1/2)
stat.t <- stat.tot/stat.se
}
# Reg Table
reg.tab <- data.frame("Estimate"=stat.tot, "Std. Error"=stat.se, "t value"=stat.t, check.names=F)
results <- list("replicates"=coe.rep, "residuals"= resid, "var.w"=var.w, "var.b"=var.b, "reg"=reg.tab)
return(results)
}
if (config$parameters$weights == "mixed_piaac") {
# mixed design, different for different coutnries
# PIAAC
# PV labels
# List of formulas for each PV
regform <- lapply(pvnames, function(i) paste(i, "~", paste(x, collapse="+")))
# Replicate weighted coefficients for sampling error (PVs)
Coefrpv <- lapply(regform, function(k) lapply(1:config$parameters$BRRreps, function(i)
summary(lm(formula=as.formula(k), data=data,
weights=data[[paste(config$variables$weightBRR, i , sep="")]]))))
# Combining coefficients and R-squared replicates
Statrp <- lapply(1:length(pvnames), function(pv) sapply(1:config$parameters$BRRreps, function(i)
c(Coefrpv[[pv]][[i]]$coefficients[,1], Coefrpv[[pv]][[i]]$r.squared)))
# Total weighted coefficient for each PV for imputation (between) error
Regpv <- lapply(regform, function(i)
lm(formula=as.formula(i), data=data, weights=data[[config$variables$weightFinal]]))
Stattot <- sapply(1:length(pvnames), function(pv)
c(summary(Regpv[[pv]])$coefficients[, 1], summary(Regpv[[pv]])$r.squared))
rownames(Stattot)[nrow(Stattot)] <- "R-squared"
# Mean total coefficients (across PVs)
Stattotm <- apply(Stattot, 1, mean)
cntName <- as.character(unique(data$CNTRYID))[1]
cc <- piaacReplicationScheme[cntName,"c"]
if (is.na(cc)) cc <- 1
if (length(unique(piaacReplicationScheme[as.character(unique(data$CNTRYID)),"c"])) > 1) {
warning(paste("In PIAAC study different replications schemes were applied in different countries. \n In the selected set of countries more than one scheme was used. \n Further estimation is performed with coefficient c =", cc))
}
# Sampling error (variance within)
Varw <- apply(cc*sapply(lapply(1:length(pvnames), function(pv)
(Statrp[[pv]]-Stattot[,pv])^2), function(e) apply(e, 1, sum)), 1, mean)
# Imputation error (variance between)
Varb <- (1/(length(pvnames)-1))*apply(sapply(1:length(pvnames), function(i)
(Stattot[, i] - Stattotm)^2), 1, sum)
StatSE <- (Varw+(1+1/length(pvnames))*Varb)^(1/2)
StatT <- Stattotm/StatSE
# Reg Table
RegTab <- round(data.frame("Estimate"=Stattotm, "Std. Error"=StatSE, "t value"=StatT, check.names=FALSE),2)
results <- list("replicates"=t(Statrp), "reg"=RegTab)
return(results)
}
}
# If by no supplied, calculate for the complete sample
if (missing(by)) {
output <- reg.pv.input(x=x, pvnames=pvnames, data=data, std=std, config=config)
} else {
output <- lapply(split(data, droplevels(data[by])), function(i)
reg.pv.input(x=x, pvnames=pvnames, data=i, std=std, config=config))
}
if (export) {
write.csv(do.call(rbind, lapply(output, function(x) x$reg)), file=file.path(folder, paste(name, ".csv", sep="")))
}
class(output) <- "intsvy.reg"
return(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.