Nothing
#' @keywords internal
"_PACKAGE"
## usethis namespace: start
#' ipd: Inference on Predicted Data
#'
#' The `ipd` package provides tools for statistical modeling and inference when
#' a significant portion of the outcome data is predicted by AI/ML algorithms.
#' It implements several state-of-the-art methods for inference on predicted
#' data (IPD), offering a user-friendly interface to facilitate their use in
#' real-world applications.
#'
#' This package is particularly useful in scenarios where predicted values
#' (e.g., from machine learning models) are used as proxies for unobserved
#' outcomes, which can introduce biases in estimation and inference. The `ipd`
#' package integrates methods designed to address these challenges.
#'
#' @section Features:
#' - Multiple IPD methods: `PostPI`, `PPI`, `PPI++`, and `PSPA` currently.
#' - Flexible wrapper functions for ease of use.
#' - Custom methods for model inspection and evaluation.
#' - Seamless integration with common data structures in R.
#' - Comprehensive documentation and examples.
#'
#' @section Key Functions:
#' - \code{\link{ipd}}: Main wrapper function which implements various methods for inference on predicted data for a specified model/outcome type (e.g., mean estimation, linear regression).
#' - \code{\link{simdat}}: Simulates data for demonstrating the use of the various IPD methods.
#' - \code{\link{print.ipd}}: Prints a brief summary of the IPD method/model combination.
#' - \code{\link{summary.ipd}}: Summarizes the results of fitted IPD models.
#' - \code{\link{tidy.ipd}}: Tidies the IPD method/model fit into a data frame.
#' - \code{\link{glance.ipd}}: Glances at the IPD method/model fit, returning a one-row summary.
#' - \code{\link{augment.ipd}}: Augments the data used for an IPD method/model fit with additional information about each observation.
#'
#' @section Documentation:
#' The package includes detailed documentation for each function, including
#' usage examples. A vignette is also provided to guide users through common
#' workflows and applications of the package.
#'
#' @section References:
#' For details on the statistical methods implemented in this package, please
#' refer to the associated manuscripts at the following references:
#' - \strong{PostPI}: Wang, S., McCormick, T. H., & Leek, J. T. (2020). Methods for correcting inference based on outcomes predicted by machine learning. Proceedings of the National Academy of Sciences, 117(48), 30266-30275.
#' - \strong{PPI}: Angelopoulos, A. N., Bates, S., Fannjiang, C., Jordan, M. I., & Zrnic, T. (2023). Prediction-powered inference. Science, 382(6671), 669-674.
#' - \strong{PPI++}: Angelopoulos, A. N., Duchi, J. C., & Zrnic, T. (2023). PPI++: Efficient prediction-powered inference. arXiv preprint arXiv:2311.01453.
#' - \strong{PSPA}: Miao, J., Miao, X., Wu, Y., Zhao, J., & Lu, Q. (2023). Assumption-lean and data-adaptive post-prediction inference. arXiv preprint arXiv:2311.14220.
#'
#' @name ipd-package
#'
#' @keywords package
#'
#' @examples
#' #-- Generate Example Data
#'
#' set.seed(12345)
#'
#' dat <- simdat(n = c(300, 300, 300), effect = 1, sigma_Y = 1)
#'
#' head(dat)
#'
#' formula <- Y - f ~ X1
#'
#' #-- PostPI Analytic Correction (Wang et al., 2020)
#'
#' fit_postpi1 <- ipd(formula, method = "postpi_analytic", model = "ols",
#'
#' data = dat, label = "set_label")
#'
#' #-- PostPI Bootstrap Correction (Wang et al., 2020)
#'
#' nboot <- 200
#'
#' fit_postpi2 <- ipd(formula, method = "postpi_boot", model = "ols",
#'
#' data = dat, label = "set_label", nboot = nboot)
#'
#' #-- PPI (Angelopoulos et al., 2023)
#'
#' fit_ppi <- ipd(formula, method = "ppi", model = "ols",
#'
#' data = dat, label = "set_label")
#'
#' #-- PPI++ (Angelopoulos et al., 2023)
#'
#' fit_plusplus <- ipd(formula, method = "ppi_plusplus", model = "ols",
#'
#' data = dat, label = "set_label")
#'
#' #-- PSPA (Miao et al., 2023)
#'
#' fit_pspa <- ipd(formula, method = "pspa", model = "ols",
#'
#' data = dat, label = "set_label")
#'
#' #-- Print the Model
#'
#' print(fit_postpi1)
#'
#' #-- Summarize the Model
#'
#' summ_fit_postpi1 <- summary(fit_postpi1)
#'
#' #-- Print the Model Summary
#'
#' print(summ_fit_postpi1)
#'
#' #-- Tidy the Model Output
#'
#' tidy(fit_postpi1)
#'
#' #-- Get a One-Row Summary of the Model
#'
#' glance(fit_postpi1)
#'
#' #-- Augment the Original Data with Fitted Values and Residuals
#'
#' augmented_df <- augment(fit_postpi1)
#'
#' head(augmented_df)
## usethis namespace: end
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.