Nothing
#'@title SFS similarity measure simWWLWW7
#'@description SFS similarity measure values using simWWLWW7 computation technique with membership,non-membership, and indeterminacy membership values of two objects or set of objects.
#'@param ma SFS membership values for the data set x computed using either triangular or trapezoidal or guassian membership function
#'@param na SFS non-membership values for the data set x computed using either Sugeno and Terano's or Yager's non-membership function
#'@param ia SFS indeterminacy membership values for the data set x
#'@param mb SFS membership values for the data set y computed using either triangular or trapezoidal or guassian membership function
#'@param nb SFS non-membership values for the data set y computed using either Sugeno and Terano's or Yager's non-membership function
#'@param ib SFS indeterminacy membership values for the data set y
#'@param k A constant value, considered as 1
#'@return The SFS similarity values of data set y with data set x
#'@references G. Wei, J. Wang, M. Lu, J. Wu, and C. Wei. Similarity measures of spherical fuzzy sets based on cosine function and their applications. IEEE Access, 7:159069 - 159080, 2019.
#'@examples
#'x<-matrix(c(12,9,14,11,21,16,15,24,20,17,14,11),nrow=4)
#'y<-matrix(c(11,21,6),nrow=1)
#'a<-mn(x)
#'b<-std(x)
#'a1<-mn(y)
#'b1<-std(y)
#'lam<-0.5
#'ma<-memG(a,b,x)
#'na<-nonmemS(ma,lam)
#'ia<-imemSFS(ma,na)
#'mb<-memG(a1,b1,y)
#'nb<-nonmemS(mb,lam)
#'ib<-imemSFS(mb,nb)
#'k<-1
#'simWWLWW7(ma,na,mb,nb,ia,ib,k)
#'#[1] 0.04488958 0.04334510 0.08280306 0.08280306
#'@export
simWWLWW7<-function(ma,na,mb,nb,ia,ib,k){
c<-matrix(0,nrow=nrow(ma),ncol=ncol(ma))
for (i in 1:nrow(ma)) {
for(j in 1:ncol(ma))
c[i,j]<-tan((pi/4)+((pi/4))*max(abs(ma[i,j]^2-mb[k,j]^2),abs(na[i,j]^2-nb[k,j]^2),abs(ia[i,j]^2-ib[k,j]^2)))
}
for(j in 1:ncol(c)){
sum<-(1/ncol(c))*(1/rowSums(c))
}
sum
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.