R/utils.R

Defines functions sim sco tia

Documented in sco sim tia

#' Simulate response data
#' 
#' Simulate responses from the 1PL, 2PL, or 3PL model
#' 
#' 
#' @param ip Item parameters: a matrix with one row per item, and three
#' columns: [,1] item discrimination \eqn{a}, [,2] item difficulty \eqn{b}, and
#' [,3] asymptote \eqn{c}. Can also use the object returned by \code{est}.
#' @param x A vector of values of the latent variable ("abilities").
#' @return A matrix of responses: persons as rows, items as columns, entries
#' are either 0 or 1, no missing data
#' @author Ivailo Partchev
#' @keywords models
#' 
#' @examples
#' 
#' pa <- cbind(runif(20,.8,2), runif(20,-2.4,2.4), rep(0,50))
#' rs <- sim(ip=pa, x=rnorm(1000))
#' 
sim = function(ip, x=NULL) {
  if (is.list(ip)) ip=ip$est
  i = irf(ip=ip, x=x)
  d = dim(i$f)
  u = runif(d[1]*d[2])
  dim(u) = d
  return(ifelse(i$f  > u, 1, 0))
}


#' Score a multiple choice test
#' 
#' Given a key, score a multiple choice test, i.e. recode the original choices
#' to right (1) or wrong (0). Missing responses are treated as wrong.
#' 
#' 
#' @param choices The original responses to the items in the test: persons as
#' rows, items as columns. May contain NA.
#' @param key A vector containing the key (correct answers) to the items in
#' \code{choices}. If not given, the function will check if all data are either
#' 0, 1, or NA: if yes, NA are recoded as 0, else an error message is returned.
#' @param na.false Recode non-responses to false responses?
#' @return A matrix of responses scored 0=wrong 1=correct, and possibly NA
#' @author Ivailo Partchev
#' @keywords models
#' 
#' @examples
#' 
#' res <- sco(Unscored, key=c(2,3,1,1,4,1,2,1,2,3,3,4,3,4,2,2,4,3))
#' 
sco = function(choices, key, na.false=FALSE) {
  if(missing(key)) {
    if (all(choices %in% c(0,1,NA))) key = rep(1,ncol(choices)) else
    stop("trying to score multiple choices without a key")
  }
  if(length(key) != ncol(choices)) stop ("wrong length of key")
  correct = sapply(1:ncol(choices), function(i) as.numeric(choices[,i]==key[i]))
  if (na.false) correct[is.na(correct)] = 0
  return(correct)
}





#' Elementary test-item analysis
#' 
#' Elementary analysis of the items in a test and the test sumscores
#' based on Classical Test Theory.
#' 
#' @param choices The original responses to the items in the test: persons as
#' rows, items as columns. May contain NA.
#' @param key A vector containing the key (correct answers) to the items in
#' \code{choices}. If not given, the function will check if all data are either
#' 0, 1, or NA: if yes, NA are recoded as 0, else an error message is returned.
#' @param ... Other parameters that may be passed to \code{sco} or \code{cov}
#' @return A list with three elements: 
#' \describe{
#'   \item{testlevel}{A list of statistics at test level (currently, only
#'   Cronbach's alpha, may be extended in future)}
#'   \item{itemlevel}{A matrix showing, for each item, the proportion of
#'   correct responses, the correlation with the sum score, and the 
#'   alpha that the test would have if the item were dropped.} 
#'   \item{optionlevel}{A matrix showing, for each possible choice in the
#'   multiple-choice item, the proportion of responses given, and 
#'   the correlation with the sum score for the test (including the item).
#'   The correct response is highlighted with asterisks.}
#' }
#' @author Ivailo Partchev
#' @keywords models
#' 
#' @examples
#' 
#' itemsum <- tia(Unscored, key=c(2,3,1,1,4,1,2,1,2,3,3,4,3,4,2,2,4,3))
#' 
tia = function(choices, key, ...) {
  stopifnot(is.matrix(choices), (nc <- ncol(choices)) == length(key))
  scres = sco(choices, key)
  sumsc = rowMeans(scres, na.rm=T)
  itr = lapply(1:nc, function(i) {
    mmx = model.matrix(~0+as.factor(choices[,i]))
	  pvl = colMeans(mmx)
    itc = cor(sumsc[!is.na(choices[,i])], mmx)
    px = rep("", ncol(mmx)); px[key[i]]="*"
    res = rbind(pvl,itc)
    attr(res,"dimnames") = list(c("Rel. frequency","Cor. with sum"),
        paste(px,1:ncol(mmx),px,sep=""))
    res
  })
  sx = cov(scres, use="complete")
  k = nrow(sx)
  alpha = k/(k-1)*(1-sum(diag(sx))/sum(sx))
  pva = colMeans(scres, na.rm=T)
  rit = cor(scres,sumsc, use="complete")
  diagx = sum(diag(sx)) - diag(sx)
  csumx = sum(sx) - 2*colSums(sx) - diag(sx)
  alpha.drop = (k-1)/(k-2)*(1-diagx/csumx)
  tsk=cbind(pva,rit,alpha.drop)
  attr(tsk,"dimnames") = list(paste("Item",1:nc,sep=""), c("Prop. correct","Item-sum cor.","Alpha without"))
  list(testlevel=list(alpha=alpha),itemlevel=tsk,optionlevel=itr)
}

#' Approximate tetchoric correlation matrix
#' 
#' Matrix of tetchoric correlations using the approximation by 
#' Bonett and Price (2005).
#' 
#' @param d a matrix (or data frame, which will be converted to a matrix) containing
#' only zeroes an ones. NAs are not allowed.
#' @return A matrix of approximate tetchoric correlations. 
#' @author Ivailo Partchev
#' @references Douglas G. Bonett and Robert M. Price (2005). Inferential Methods for the 
#' Tetrachoric Correlation Coefficient. Journal of Educational and Behavioral Statistics,
#' Vol. 30, No. 2, pp. 213--225
#' @keywords models
#' 
#' @examples
#' 
#' tets <- tet(Scored)
#' 
tet <- function (d) {
  d = as.matrix(d)
  stopifnot(all(d %in% 0:1))
  n = nrow(d)
  x = crossprod(d,d)
  y = diag(x)
  m = -sweep(x, 1, y, "-")
  o = (x + .5) * (n - x - m - t(m) + .5) / (m + .5) / t(m + .5)
  y = y / n
  w = pmin(y, 1 - y)
  p = (1 - abs(outer(y, y , "-")) / 5 - (0.5 - outer(w, w, pmin))^2) / 2 
  cos(pi / (1 + o^p))
}

Try the irtoys package in your browser

Any scripts or data that you put into this service are public.

irtoys documentation built on May 2, 2019, 3:03 a.m.