R/jointSE.R

Defines functions jointSE

Documented in jointSE

#' Standard errors via bootstrap for a joint model fit
#' 
#' @description This function takes a model fit from a joint model and
#'   calculates standard errors, with optional confidence intervals, for the
#'   main longitudinal and survival covariates.
#' 
#' @param fitted a list containing as components the parameter estimates 
#'   obtained by fitting a joint model along with the respective formulae for 
#'   the longitudinal and survival sub-models and the model chosen, see 
#'   \code{joint} for further details.
#' @param n.boot argument specifying the number of bootstrap samples to use in 
#'   order to obtain the standard error estimates and confidence intervals. Note
#'   that at least \code{n.boot = 100} is required in order for the function to 
#'   return non-zero confidence intervals.
#' @inheritParams joint
#' @param print.detail This argument determines the level of printing that is 
#'   done during the bootstrapping. If \code{TRUE} then the parameter estimates 
#'   from each bootstrap sample are output.
#'   
#' @details Standard errors and confidence intervals are obtained by repeated 
#'   fitting of the requisite joint model to bootstrap samples of the original 
#'   longitudinal and survival data. It is rare that more than 200 bootstrap 
#'   samples are needed for estimating a standard error. The number of bootstrap
#'   samples needed for accurate confidence intervals can be as large as 1000.
#'   
#' @author Ruwanthi Kolamunnage-Dona and Pete Philipson
#' @keywords models survival htest
#' @seealso \code{\link[nlme]{lme}}, \code{\link[survival]{coxph}}, 
#'   \code{\link{joint}}, \code{\link{jointdata}}.
#'   
#' @return An object of class \code{data.frame}.
#' @export
#' 
#' @references
#' 
#' Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data 
#' measured with error. \emph{Biometrics.} 1997; \strong{53(1)}: 330-339.
#' 
#' Efron B, Tibshirani R. \emph{An Introduction to the Bootstrap.} 2000; Boca 
#' Raton, FL: Chapman & Hall/CRC.
#' 
#' @examples
#' data(heart.valve)
#' heart.surv <- UniqueVariables(heart.valve, 
#'                               var.col = c("fuyrs", "status"), 
#'                               id.col = "num")
#' heart.long <- heart.valve[, c("num", "time", "log.lvmi")]
#' heart.cov <- UniqueVariables(heart.valve, 
#'                              c("age", "hs", "sex"), 
#'                              id.col = "num")
#' heart.valve.jd <- jointdata(longitudinal = heart.long, 
#'                             baseline = heart.cov, 
#'                             survival = heart.surv, 
#'                             id.col = "num", 
#'                             time.col = "time")
#' fit <- joint(heart.valve.jd, 
#'              long.formula = log.lvmi ~ 1 + time + hs, 
#'              surv.formula = Surv(fuyrs, status) ~ hs, 
#'              model = "int")
#' jointSE(fitted = fit, n.boot = 1)
jointSE <- function(fitted, n.boot, gpt, lgpt, max.it, tol, 
                    print.detail = FALSE) {
  
  if (!inherits(fitted, "joint")) {
    stop("Fitted model must be of class 'joint'\n")
  }
  
  data <- fitted$data
  id <- fitted$data$subj.col
  time.long <- fitted$data$time.col
  q <- length(diag(fitted$sigma.u))
  b2.names <- NULL
  if (fitted$compRisk) {
    b2.est <- c(fitted$coefficients$fixed$survival1,
                fitted$coefficients$fixed$survival2)
    b2.names <- c(names(fitted$coefficients$fixed$survival1),
                  names(fitted$coefficients$fixed$survival2))
  } else {
    b2.est <- fitted$coefficients$fixed$survival
    b2.names <- names(fitted$coefficients$fixed$survival)
  }
  
  paranames <- c(row.names(fitted$coefficients$fixed$longitudinal), 
                 b2.names,
                 names(fitted$coefficients$latent), 
                 paste("U_", 0:(q-1), sep = ""),
                 "Residual")
  
  mles <- c(fitted$coefficients$fixed$longitudinal[, 1],
            b2.est,
            fitted$coefficients$latent,
            diag(fitted$sigma.u),
            fitted$sigma.z)
  
  compnames <- rep("", length(paranames))
  compnames[1] <- "Longitudinal"
  lb1 <- length(fitted$coefficients$fixed$longitudinal[, 1])
  lb2.a <- ifelse(fitted$compRisk, 
                  length(fitted$coefficients$fixed$survival1),
                  length(fitted$coefficients$fixed$survival))
  lb2.b <- ifelse(fitted$compRisk, 
                  length(fitted$coefficients$fixed$survival2),
                  0)
  lg <- length(fitted$coefficients$latent)
  if (fitted$compRisk) {
    compnames[lb1 + 1] <- "Failure (cause 1)"
    compnames[lb1 + lb2.a + 1] <- "Failure (cause 2)"
  } else {
    compnames[lb1 + 1] <- "Failure"
  }
  compnames[lb1 + lb2.a + lb2.b + 1] <- "Association"
  compnames[lb1 + lb2.a + lb2.b + lg + 1] <- "Variance"
  
  if (missing(gpt)) {
    gpt <- 3
  }
  if (missing(lgpt)) {
    lgpt <- 10
  }
  if (missing(max.it)) {
    max.it <- 200
  }
  if (missing(tol)) {
    tol <- 0.001
  }
  
  model <- fitted$model
  surv.formula <- fitted$formulae$sformula
  long.formula <- fitted$formulae$lformula
  sepassoc <- fitted$sepassoc
  
  n.est <- length(paranames)
  nsubj <- length(fitted$data$subject)
  out <- matrix(0, n.boot, n.est)
  
  for (i in 1:n.boot) { # start bootstrap loop here
    
    s.new <- sample.jointdata(data, nsubj, replace = TRUE)
    suppressMessages(
      fitb <- joint(data = s.new, 
                    long.formula = long.formula, 
                    surv.formula = surv.formula,
                    model = model,
                    sepassoc = sepassoc, 
                    gpt = gpt, max.it = max.it, tol = tol, lgpt = lgpt)
    )
    
    b1 <- as.numeric(as.vector(as.matrix(fitb$coefficients$fixed$longitudinal[, 1])))
    b3 <- as.numeric(as.vector(as.matrix(fitb$coefficients$latent)))
    b4 <- as.numeric(as.vector(as.matrix(diag(fitb$sigma.u))))
    b5 <- as.numeric(as.vector(as.matrix(fitb$sigma.z)))
    
    if (lb2.a > 0) { 
      if (fitted$compRisk) {
        b2 <- c(as.numeric(as.vector(as.matrix(fitb$coefficients$fixed$survival1))),
                as.numeric(as.vector(as.matrix(fitb$coefficients$fixed$survival2))))
      } else {
        b2 <- as.numeric(as.vector(as.matrix(fitb$coefficients$fixed$survival)))
      }
      out[i, ] <- c(b1, b2, b3, b4, b5)
      ests <- out[i, ]
    } else {
      out[i, ] <- c(b1, b3, b4, b5)
      ests <- out[i, ]
    }
    
    if (print.detail) { 
      detail <- data.frame(iteration = i, t(ests))
      names(detail) <- c("Iteration", paranames)
      print(detail)
    }
    
  } # end of bootstrap loop
  
  se <- 0
  ci1 <- 0
  ci2 <- 0
  if (n.boot == 1) {
    out <- matrix(out, nrow = 1)
  }
  for (i in 1:length(out[1, ])) {
    se[i] <- sqrt(var(as.numeric(out[, i])))
    if (n.boot < 100) {
      ci1[i] <- 0
      ci2[i] <- 0
    } else {
      ci1[i] <- sort(as.numeric(out[, i]))[0.025 * n.boot]
      ci2[i] <- sort(as.numeric(out[, i]))[0.975 * n.boot]
    }
  }
  
  b1 <- data.frame(compnames, paranames)
  b1 <- cbind(b1, round(mles, 4), round(cbind(se), 4), round(ci1, 4), round(ci2, 4))
  
  colnames(b1)[1:6] <- c("Component", "Parameter", "Estimate", "SE", 
                         "95%Lower", "95%Upper")
  return(b1)
  
}

Try the joineR package in your browser

Any scripts or data that you put into this service are public.

joineR documentation built on Jan. 23, 2023, 5:39 p.m.