keras_model: Keras Model

Description Usage Arguments See Also Examples

View source: R/model.R

Description

A model is a directed acyclic graph of layers.

Usage

1
keras_model(inputs, outputs = NULL)

Arguments

inputs

Input layer

outputs

Output layer

See Also

Other model functions: compile.keras.engine.training.Model, evaluate.keras.engine.training.Model, evaluate_generator, fit.keras.engine.training.Model, fit_generator, get_config, get_layer, keras_model_sequential, multi_gpu_model, pop_layer, predict.keras.engine.training.Model, predict_generator, predict_on_batch, predict_proba, summary.keras.engine.training.Model, train_on_batch

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
## Not run: 
library(keras)

# input layer
inputs <- layer_input(shape = c(784))

# outputs compose input + dense layers
predictions <- inputs %>%
  layer_dense(units = 64, activation = 'relu') %>% 
  layer_dense(units = 64, activation = 'relu') %>% 
  layer_dense(units = 10, activation = 'softmax')

# create and compile model
model <- keras_model(inputs = inputs, outputs = predictions)
model %>% compile(
  optimizer = 'rmsprop',
  loss = 'categorical_crossentropy',
  metrics = c('accuracy')
)

## End(Not run)

keras documentation built on Oct. 9, 2019, 1:04 a.m.