View source: R/layers-embedding.R
| layer_embedding | R Documentation | 
Turns positive integers (indexes) into dense vectors of fixed size
layer_embedding(
  object,
  input_dim,
  output_dim,
  embeddings_initializer = "uniform",
  embeddings_regularizer = NULL,
  activity_regularizer = NULL,
  embeddings_constraint = NULL,
  mask_zero = FALSE,
  input_length = NULL,
  sparse = FALSE,
  ...
)
| object | Layer or Model object | 
| input_dim | Integer. Size of the vocabulary, i.e. maximum integer index + 1. | 
| output_dim | Integer. Dimension of the dense embedding. | 
| embeddings_initializer | Initializer for the  | 
| embeddings_regularizer,activity_regularizer | Regularizer function applied to
the  | 
| embeddings_constraint | Constraint function applied to
the  | 
| mask_zero | Boolean, whether or not the input value 0 is a special
"padding" value that should be masked out. This is useful when using
recurrent layers which may take variable length input. If this is
 | 
| input_length | Length of input sequences, when it is constant.
This argument is required if you are going to connect
 | 
| sparse | If TRUE, calling this layer returns a  | 
| ... | standard layer arguments. | 
For example, list(4L, 20L) -> list(c(0.25, 0.1), c(0.6, -0.2)).
This layer can only be used on positive integer inputs of a fixed range. The
layer_text_vectorization(), layer_string_lookup(),
and layer_integer_lookup() preprocessing layers can help prepare
inputs for an Embedding layer.
This layer accepts tf.Tensor, tf.RaggedTensor and tf.SparseTensor
input.
2D tensor with shape: (batch_size, sequence_length).
3D tensor with shape: (batch_size, sequence_length, output_dim).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.