layer_random_translation: Randomly translate each image during training

View source: R/layers-preprocessing.R

layer_random_translationR Documentation

Randomly translate each image during training

Description

Randomly translate each image during training

Usage

layer_random_translation(
  object,
  height_factor,
  width_factor,
  fill_mode = "reflect",
  interpolation = "bilinear",
  seed = NULL,
  fill_value = 0,
  ...
)

Arguments

object

What to compose the new Layer instance with. Typically a Sequential model or a Tensor (e.g., as returned by layer_input()). The return value depends on object. If object is:

  • missing or NULL, the Layer instance is returned.

  • a Sequential model, the model with an additional layer is returned.

  • a Tensor, the output tensor from layer_instance(object) is returned.

height_factor

a float represented as fraction of value, or a list of size 2 representing lower and upper bound for shifting vertically. A negative value means shifting image up, while a positive value means shifting image down. When represented as a single positive float, this value is used for both the upper and lower bound. For instance, height_factor = c(-0.2, 0.3) results in an output shifted by a random amount in the range ⁠[-20%, +30%]⁠. height_factor = 0.2 results in an output height shifted by a random amount in the range ⁠[-20%, +20%]⁠.

width_factor

a float represented as fraction of value, or a list of size 2 representing lower and upper bound for shifting horizontally. A negative value means shifting image left, while a positive value means shifting image right. When represented as a single positive float, this value is used for both the upper and lower bound. For instance, width_factor = c(-0.2, 0.3) results in an output shifted left by 20%, and shifted right by 30%. width_factor = 0.2 results in an output height shifted left or right by 20%.

fill_mode

Points outside the boundaries of the input are filled according to the given mode (one of ⁠{"constant", "reflect", "wrap", "nearest"}⁠).

  • reflect: ⁠(d c b a | a b c d | d c b a)⁠ The input is extended by reflecting about the edge of the last pixel.

  • constant: ⁠(k k k k | a b c d | k k k k)⁠ The input is extended by filling all values beyond the edge with the same constant value k = 0.

  • wrap: ⁠(a b c d | a b c d | a b c d)⁠ The input is extended by wrapping around to the opposite edge.

  • nearest: ⁠(a a a a | a b c d | d d d d)⁠ The input is extended by the nearest pixel.

interpolation

Interpolation mode. Supported values: "nearest", "bilinear".

seed

Integer. Used to create a random seed.

fill_value

a float represents the value to be filled outside the boundaries when fill_mode="constant".

...

standard layer arguments.

See Also

Other image augmentation layers: layer_random_brightness(), layer_random_contrast(), layer_random_crop(), layer_random_flip(), layer_random_height(), layer_random_rotation(), layer_random_width(), layer_random_zoom()

Other preprocessing layers: layer_category_encoding(), layer_center_crop(), layer_discretization(), layer_hashing(), layer_integer_lookup(), layer_normalization(), layer_random_brightness(), layer_random_contrast(), layer_random_crop(), layer_random_flip(), layer_random_height(), layer_random_rotation(), layer_random_width(), layer_random_zoom(), layer_rescaling(), layer_resizing(), layer_string_lookup(), layer_text_vectorization()


keras documentation built on May 29, 2024, 3:20 a.m.