metric_mean_iou | R Documentation |
Computes the mean Intersection-Over-Union metric
metric_mean_iou(..., num_classes, name = NULL, dtype = NULL)
... |
Passed on to the underlying metric. Used for forwards and backwards compatibility. |
num_classes |
The possible number of labels the prediction task can have.
This value must be provided, since a confusion matrix of |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation, which first computes the IOU for each semantic class and then computes the average over classes. IOU is defined as follows:
IOU = true_positive / (true_positive + false_positive + false_negative)
The predictions are accumulated in a confusion matrix, weighted by
sample_weight
and the metric is then calculated from it.
If sample_weight
is NULL
, weights default to 1.
Use sample_weight
of 0 to mask values.
A (subclassed) Metric
instance that can be passed directly to
compile(metrics = )
, or used as a standalone object. See ?Metric
for
example usage.
Other metrics:
custom_metric()
,
metric_accuracy()
,
metric_auc()
,
metric_binary_accuracy()
,
metric_binary_crossentropy()
,
metric_categorical_accuracy()
,
metric_categorical_crossentropy()
,
metric_categorical_hinge()
,
metric_cosine_similarity()
,
metric_false_negatives()
,
metric_false_positives()
,
metric_hinge()
,
metric_kullback_leibler_divergence()
,
metric_logcosh_error()
,
metric_mean()
,
metric_mean_absolute_error()
,
metric_mean_absolute_percentage_error()
,
metric_mean_relative_error()
,
metric_mean_squared_error()
,
metric_mean_squared_logarithmic_error()
,
metric_mean_tensor()
,
metric_mean_wrapper()
,
metric_poisson()
,
metric_precision()
,
metric_precision_at_recall()
,
metric_recall()
,
metric_recall_at_precision()
,
metric_root_mean_squared_error()
,
metric_sensitivity_at_specificity()
,
metric_sparse_categorical_accuracy()
,
metric_sparse_categorical_crossentropy()
,
metric_sparse_top_k_categorical_accuracy()
,
metric_specificity_at_sensitivity()
,
metric_squared_hinge()
,
metric_sum()
,
metric_top_k_categorical_accuracy()
,
metric_true_negatives()
,
metric_true_positives()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.