| metric_mean_relative_error | R Documentation |
Computes the mean relative error by normalizing with the given values
metric_mean_relative_error(..., normalizer, name = NULL, dtype = NULL)
... |
Passed on to the underlying metric. Used for forwards and backwards compatibility. |
normalizer |
The normalizer values with same shape as predictions. |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
This metric creates two local variables, total and count that are used to
compute the mean relative error. This is weighted by sample_weight, and
it is ultimately returned as mean_relative_error:
an idempotent operation that simply divides total by count.
If sample_weight is NULL, weights default to 1.
Use sample_weight of 0 to mask values.
metric = mean(|y_pred - y_true| / normalizer)
For example:
m = metric_mean_relative_error(normalizer=c(1, 3, 2, 3)) m$update_state(c(1, 3, 2, 3), c(2, 4, 6, 8)) # result = mean(c(1, 1, 4, 5) / c(1, 3, 2, 3)) = mean(c(1, 1/3, 2, 5/3)) # = 5/4 = 1.25 m$result()
A (subclassed) Metric instance that can be passed directly to
compile(metrics = ), or used as a standalone object. See ?Metric for
example usage.
Other metrics:
custom_metric(),
metric_accuracy(),
metric_auc(),
metric_binary_accuracy(),
metric_binary_crossentropy(),
metric_categorical_accuracy(),
metric_categorical_crossentropy(),
metric_categorical_hinge(),
metric_cosine_similarity(),
metric_false_negatives(),
metric_false_positives(),
metric_hinge(),
metric_kullback_leibler_divergence(),
metric_logcosh_error(),
metric_mean(),
metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),
metric_mean_iou(),
metric_mean_squared_error(),
metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),
metric_mean_wrapper(),
metric_poisson(),
metric_precision(),
metric_precision_at_recall(),
metric_recall(),
metric_recall_at_precision(),
metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),
metric_sparse_categorical_accuracy(),
metric_sparse_categorical_crossentropy(),
metric_sparse_top_k_categorical_accuracy(),
metric_specificity_at_sensitivity(),
metric_squared_hinge(),
metric_sum(),
metric_top_k_categorical_accuracy(),
metric_true_negatives(),
metric_true_positives()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.