| metric_sparse_categorical_accuracy | R Documentation |
Calculates how often predictions match integer labels
metric_sparse_categorical_accuracy(
y_true,
y_pred,
...,
name = "sparse_categorical_accuracy",
dtype = NULL
)
y_true |
Tensor of true targets. |
y_pred |
Tensor of predicted targets. |
... |
Passed on to the underlying metric. Used for forwards and backwards compatibility. |
name |
(Optional) string name of the metric instance. |
dtype |
(Optional) data type of the metric result. |
acc = k_dot(sample_weight, y_true == k_argmax(y_pred, axis=2))
You can provide logits of classes as y_pred, since argmax of
logits and probabilities are same.
This metric creates two local variables, total and count that are used to
compute the frequency with which y_pred matches y_true. This frequency is
ultimately returned as sparse categorical accuracy: an idempotent operation
that simply divides total by count.
If sample_weight is NULL, weights default to 1.
Use sample_weight of 0 to mask values.
If y_true and y_pred are missing, a (subclassed) Metric
instance is returned. The Metric object can be passed directly to
compile(metrics = ) or used as a standalone object. See ?Metric for
example usage.
Alternatively, if called with y_true and y_pred arguments, then the
computed case-wise values for the mini-batch are returned directly.
Other metrics:
custom_metric(),
metric_accuracy(),
metric_auc(),
metric_binary_accuracy(),
metric_binary_crossentropy(),
metric_categorical_accuracy(),
metric_categorical_crossentropy(),
metric_categorical_hinge(),
metric_cosine_similarity(),
metric_false_negatives(),
metric_false_positives(),
metric_hinge(),
metric_kullback_leibler_divergence(),
metric_logcosh_error(),
metric_mean(),
metric_mean_absolute_error(),
metric_mean_absolute_percentage_error(),
metric_mean_iou(),
metric_mean_relative_error(),
metric_mean_squared_error(),
metric_mean_squared_logarithmic_error(),
metric_mean_tensor(),
metric_mean_wrapper(),
metric_poisson(),
metric_precision(),
metric_precision_at_recall(),
metric_recall(),
metric_recall_at_precision(),
metric_root_mean_squared_error(),
metric_sensitivity_at_specificity(),
metric_sparse_categorical_crossentropy(),
metric_sparse_top_k_categorical_accuracy(),
metric_specificity_at_sensitivity(),
metric_squared_hinge(),
metric_sum(),
metric_top_k_categorical_accuracy(),
metric_true_negatives(),
metric_true_positives()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.