optimizer_sgd | R Documentation |
Gradient descent (with momentum) optimizer
optimizer_sgd(
learning_rate = 0.01,
momentum = 0,
nesterov = FALSE,
amsgrad = FALSE,
weight_decay = NULL,
clipnorm = NULL,
clipvalue = NULL,
global_clipnorm = NULL,
use_ema = FALSE,
ema_momentum = 0.99,
ema_overwrite_frequency = NULL,
jit_compile = TRUE,
name = "SGD",
...
)
learning_rate |
A |
momentum |
float hyperparameter >= 0 that accelerates gradient descent in the relevant direction and dampens oscillations. Defaults to 0, i.e., vanilla gradient descent. |
nesterov |
boolean. Whether to apply Nesterov momentum.
Defaults to |
amsgrad |
ignored. |
weight_decay |
Float, defaults to NULL. If set, weight decay is applied. |
clipnorm |
Float. If set, the gradient of each weight is individually clipped so that its norm is no higher than this value. |
clipvalue |
Float. If set, the gradient of each weight is clipped to be no higher than this value. |
global_clipnorm |
Float. If set, the gradient of all weights is clipped so that their global norm is no higher than this value. |
use_ema |
Boolean, defaults to FALSE. If TRUE, exponential moving average (EMA) is applied. EMA consists of computing an exponential moving average of the weights of the model (as the weight values change after each training batch), and periodically overwriting the weights with their moving average. |
ema_momentum |
Float, defaults to 0.99. Only used if |
ema_overwrite_frequency |
Int or NULL, defaults to NULL. Only used if
|
jit_compile |
Boolean, defaults to TRUE. If TRUE, the optimizer will use XLA # noqa: E501 compilation. If no GPU device is found, this flag will be ignored. |
name |
String. The name to use for momentum accumulator weights created by the optimizer. |
... |
Used for backward and forward compatibility |
Update rule for parameter w
with gradient g
when momentum
is 0:
w = w - learning_rate * g
Update rule when momentum
is larger than 0:
velocity = momentum * velocity - learning_rate * g w = w + velocity
When nesterov=TRUE
, this rule becomes:
velocity = momentum * velocity - learning_rate * g w = w + momentum * velocity - learning_rate * g
Optimizer for use with compile.keras.engine.training.Model
.
Other optimizers:
optimizer_adadelta()
,
optimizer_adagrad()
,
optimizer_adam()
,
optimizer_adamax()
,
optimizer_ftrl()
,
optimizer_nadam()
,
optimizer_rmsprop()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.