| predict_proba | R Documentation |
These functions were removed in Tensorflow version 2.6. See details for how to update your code:
predict_proba(object, x, batch_size = NULL, verbose = 0, steps = NULL)
predict_classes(object, x, batch_size = NULL, verbose = 0, steps = NULL)
object |
Keras model object |
x |
Input data (vector, matrix, or array). You can also
pass a |
batch_size |
Integer. If unspecified, it will default to 32. |
verbose |
Verbosity mode, 0, 1, 2, or "auto". "auto" defaults to 1
for for most cases and defaults to |
steps |
Total number of steps (batches of samples) before declaring the
evaluation round finished. The default |
How to update your code:
predict_proba(): use predict() directly.
predict_classes():
If your model does multi-class classification:
(e.g. if it uses a softmax last-layer activation).
model %>% predict(x) %>% k_argmax()
if your model does binary classification
(e.g. if it uses a sigmoid last-layer activation).
model %>% predict(x) %>% `>`(0.5) %>% k_cast("int32")
The input samples are processed batch by batch.
Other model functions:
compile.keras.engine.training.Model(),
evaluate.keras.engine.training.Model(),
evaluate_generator(),
fit.keras.engine.training.Model(),
fit_generator(),
get_config(),
get_layer(),
keras_model(),
keras_model_sequential(),
multi_gpu_model(),
pop_layer(),
predict.keras.engine.training.Model(),
predict_generator(),
predict_on_batch(),
summary.keras.engine.training.Model(),
train_on_batch()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.