predict_proba | R Documentation |
These functions were removed in Tensorflow version 2.6. See details for how to update your code:
predict_proba(object, x, batch_size = NULL, verbose = 0, steps = NULL)
predict_classes(object, x, batch_size = NULL, verbose = 0, steps = NULL)
object |
Keras model object |
x |
Input data (vector, matrix, or array). You can also
pass a |
batch_size |
Integer. If unspecified, it will default to 32. |
verbose |
Verbosity mode, 0, 1, 2, or "auto". "auto" defaults to 1
for for most cases and defaults to |
steps |
Total number of steps (batches of samples) before declaring the
evaluation round finished. The default |
How to update your code:
predict_proba()
: use predict()
directly.
predict_classes()
:
If your model does multi-class classification:
(e.g. if it uses a softmax
last-layer activation).
model %>% predict(x) %>% k_argmax()
if your model does binary classification
(e.g. if it uses a sigmoid
last-layer activation).
model %>% predict(x) %>% `>`(0.5) %>% k_cast("int32")
The input samples are processed batch by batch.
Other model functions:
compile.keras.engine.training.Model()
,
evaluate.keras.engine.training.Model()
,
evaluate_generator()
,
fit.keras.engine.training.Model()
,
fit_generator()
,
get_config()
,
get_layer()
,
keras_model()
,
keras_model_sequential()
,
multi_gpu_model()
,
pop_layer()
,
predict.keras.engine.training.Model()
,
predict_generator()
,
predict_on_batch()
,
summary.keras.engine.training.Model()
,
train_on_batch()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.