R/sknn.R

Defines functions predict.sknn sknn.default

Documented in predict.sknn sknn.default

sknn <- function (x, ...) 
    UseMethod("sknn")

sknn.default <- function(x, grouping, kn = 3, gamma = 0, ...)
{
    cl <- match.call()
    cl[[1]] <- as.name("sknn")
    structure(list(learn = x, grouping = grouping, lev = levels(grouping), 
                k = kn, gamma = gamma, call = cl), 
        class = "sknn")
}


sknn.formula <- function (formula, data = NULL, ..., subset, na.action = na.fail) 
{    
    m <- match.call(expand.dots = FALSE)
    m$... <- NULL
    m[[1]] <- as.name("model.frame")
    m <- eval.parent(m)
    Terms <- attr(m, "terms")
    grouping <- model.response(m)
    x <- model.matrix(Terms, m)
    xint <- match("(Intercept)", colnames(x), nomatch = 0)
    if (xint > 0) 
        x <- x[, -xint, drop = FALSE]
    res <- sknn.default(x, grouping, ...)
    res$terms <- Terms
    cl <- match.call()
    cl[[1]] <- as.name("sknn")
    res$call <- cl
    res$contrasts <- attr(x, "contrasts")
    res$xlevels <- .getXlevels(Terms, m)
    res$na.action <- attr(m, "na.action")
    res
}

sknn.matrix<-function (x, grouping, ..., subset, na.action = na.fail) 
{
    if (!missing(subset)) {
        x <- x[subset, , drop = FALSE]
        grouping <- grouping[subset]
    }
    if (!missing(na.action)) {
        dfr <- na.action(structure(list(g = grouping, x = x), 
            class = "data.frame"))
        grouping <- dfr$g
        x <- dfr$x
    }
    res <- sknn.default(x, grouping, ...)
    cl <- match.call()
    cl[[1]] <- as.name("sknn")
    res$call <- cl
    res
}



sknn.data.frame<-function (x, ...) 
{
   res <- sknn.matrix(structure(data.matrix(x), class = "matrix"), 
        ...)
    cl <- match.call()
    cl[[1]] <- as.name("sknn")
    res$call <- cl
    res
}


predict.sknn <- function(object, newdata, ...)
{
    spsknn <- function(neux,object)
        {
            abstand <- apply(object$learn, 1, function(y) sum((y-neux)^2))
            kdach <- (object$grouping[order(abstand)][1:object$k])
            abdach <- abstand[order(abstand)][1:object$k]
            if (object$gamma == 0) dichten <- rep(1, length(abdach))
            else dichten <- exp(-object$gamma * abdach)
            
            erg <- tapply(dichten, kdach, sum)
            erg[is.na(erg)] <- 0
            erg2 <- table(kdach)
            return(erg)
        } 
    
    if (!inherits(object, "sknn")) 
            stop("object not of class", " 'sknn'")
        if (!is.null(Terms <- object$terms)) {
            if (missing(newdata)) 
                newdata <- model.frame(object)
            else {
                newdata <- model.frame(as.formula(delete.response(Terms)), 
                    newdata, na.action = function(x) x, xlev = object$xlevels)
            }
            x <- model.matrix(delete.response(Terms), newdata, contrasts = object$contrasts)
            xint <- match("(Intercept)", colnames(x), nomatch = 0)
            if (xint > 0) 
                x <- x[, -xint, drop = FALSE]
        }
        else {
            if (missing(newdata)) {
                if (!is.null(sub <- object$call$subset)) 
                    newdataa <- eval.parent(parse(text = paste(deparse(object$call$x, 
                    backtick = TRUE), "[", deparse(sub, backtick = TRUE), 
                    ",]")))
                else newdata <- eval.parent(object$call$x)
                if (!is.null(nas <- object$call$na.action)) 
                    newdata <- eval(call(nas, newdata))
            }
            if (is.null(dim(newdata))) 
                dim(newdata) <- c(1, length(newdata))
            x <- as.matrix(newdata)
        }
    werte <- t(apply(x, 1, spsknn, object = object))
    werte <- werte / rowSums(werte)
    classes <- factor(max.col(werte), levels = seq(along = object$lev), 
            labels = object$lev)
    result <- list(posterior = werte, class = classes)
    return(result)
}

Try the klaR package in your browser

Any scripts or data that you put into this service are public.

klaR documentation built on June 27, 2022, 5:06 p.m.