R/nbinom.R

Defines functions glmer.nb est_theta optTheta refitNB setNBdisp getNBdisp.fam getNBdisp

Documented in glmer.nb

##' @importFrom MASS negative.binomial
##' @importFrom MASS theta.ml

## ==> user should use  getME(object, "glmer.nb.theta")
getNBdisp <- function(object) environment(object@resp$family$aic)[[".Theta"]]

## Hidden, originally used at least once, well tested (!), but
if(FALSE) # not needed anymore currently
getNBdisp.fam <- function(familyString)
    as.numeric(sub(".*([-+]?\\d+(\\.\\d*)?([Ee][-+]?\\d+)?){1}.*",
                   "\\1", familyString))

## Package "constants" {only on depending the glmResp definition in ./AllClass.R}:
glmResp.f.nms <- names(glmResp$fields())
glmNB.to.change <- setdiff(glmResp.f.nms, c("Ptr", "family"))

##' setNBdisp(object,theta) :=
##' NB-object with changed [DISP]ersion parameter 'theta' (and all that entails)
setNBdisp <- function(object,theta) {
  ## assign(".Theta",theta,envir=environment(object@resp$family$aic))
  rr <- object@resp
  newresp <- do.call(glmResp$new,
                     c(lapply(setNames(nm=glmNB.to.change), rr$field),
                       list(family = MASS::negative.binomial(theta=theta))))
  newresp$setOffset(rr$offset)
  newresp$updateMu(rr$eta - rr$offset)
  object@resp <- newresp
  object
}

refitNB <- function(object, theta, control = NULL) {
    refit(setNBdisp(object, theta), control = control)
}

##' @title Optimize over the Negative Binomial Parameter Theta
##' @param object a "glmerMod" object, updated from poisson to negative.binomial()
##' @param interval and
##' @param tol      are both passed to \code{\link{optimize}()}.
##' @param verbose  ## show our own progress
##' @param control passed to \code{\link{refit}()}
##' @return the last fit, an object like 'object'
optTheta <- function(object,
                     interval = c(-5,5),
                     tol = .Machine$double.eps^0.25,
                     verbose = FALSE,
                     control = NULL)
{
  lastfit <- object
  it <- 0L
  NBfun <- function(t) {
      ## Kluge to retain last value and evaluation count {good enough for ..}
      f_refitNB <- factory(refitNB,types=c("message","warning"))
      lastfit <<- f_refitNB(lastfit, theta = exp(t),
                            control = control)
      dev <- -2*logLik(lastfit)
      it <<- it+1L
      if (verbose)
          cat(sprintf("%2d: th=%#15.10g, dev=%#14.8f, beta[1]=%#14.8f\n",
                      it, exp(t), dev, lastfit@beta[1]))
      dev
  }
  optval <- optimize(NBfun, interval=interval, tol=tol)
  stopifnot(all.equal(optval$minimum, log(getNBdisp(lastfit))))
  ## FIXME: return eval count info somewhere else? MM: new slot there, why not?
  attr(lastfit,"nevals") <- it
  ## fix up the 'th' expression, replacing it by the real number,
  ## so effects:::mer.to.glm() can eval() it:
  lastfit@call$family[["theta"]] <- exp(optval$minimum)
  ## output warnings/messages from last fit
  for (m in c("warning","message")) {
      if (!is.null(x <- attr(lastfit,paste0("factory-",m)))) {
          for (i in x) {
              get(m,pos="package:base")(i)
          }
      }
  }

  lastfit
}

## use MASS machinery to estimate theta from residuals
est_theta <- function(object, limit = 20,
                      eps = .Machine$double.eps^0.25, trace = 0)
{
  Y <- model.response(model.frame(object))
  ## may have NA values if na.exclude was used ...
  mu <- na.omit(fitted(object))
  theta.ml(Y, mu, weights = object@resp$weights,
           limit = limit, eps = eps, trace = trace)
}

## -------> ../man/glmer.Rd
##' glmer() for Negative Binomial
##' @param ... formula, data, etc: the arguments for
##' \code{\link{glmer}(..)} (apart from \code{family}!).
glmer.nb <- function(..., interval = log(th) + c(-3,3),
                     tol = 5e-5, verbose = FALSE, nb.control = NULL,
                     initCtrl = list(limit = 20, eps = 2*tol, trace = verbose,
                                     theta = NULL))
{
    ## ?? E() is a placeholder; [-1] removes it
    ## left with a 'headless' list of elements in ...
    dotE <- as.list(substitute(E(...))[-1])
    ## nE <- names(dotE <- as.list(substitute(E(...))[-1]))
    ## i <- match(c("formula",""), nE)
    ## i.frml <- i[!is.na(i)][[1]] # the index of "formula" in '...'
    ## dots <- list(...)

    mc <- match.call()

    if (is.null(th <- initCtrl$theta)) {
        mc[[1]] <- quote(lme4::glmer)
        mc$family <- quote(stats::poisson)
        mc$verbose <- (verbose>=2)
        mc$nb.control <- NULL
        ## ** FIXME: specifically add check.conv.singular="ignore"?
        ##  suppress other warnings unless explicitly specified?
        g0 <- suppressMessages(
            eval(mc, parent.frame(1L))
        )

        th <- est_theta(g0, limit = initCtrl$limit,
                        eps = initCtrl$eps, trace = initCtrl$trace)

        ## using format() on purpose, influenced by options(digits = *) :
        if(verbose) cat("th := est_theta(glmer(..)) =", format(th))
    }

    mc$initCtrl <- NULL ## clear to prevent infinite recursion
                        ##  in initCtrl$theta reference above ...
    mc$family <- bquote(MASS::negative.binomial(theta=.(th)))
    ## ** see FIXME above
    g1 <- suppressMessages(
        eval(mc, parent.frame(1L))
    )

    if(verbose) cat(" --> dev.= -2*logLik(.) =", format(-2*logLik(g1)),"\n")
    ## fix the 'data' part (only now!)
    if("data" %in% names(g1@call)) {
        if (!is.null(dotE[["data"]])) {
            g1@call[["data"]] <- dotE[["data"]]
        }
    } else
        warning("no 'data = *' in glmer.nb() call ... Not much is guaranteed")
    other.args <- c("verbose","control")
    for (a in other.args) {
        if (a %in% names(g1@call)) {
            g1@call[[a]] <- dotE[[a]]
        }
    }

    ## FIXME: optTheta should also work by modifying mc directly,
    ##  then re-evaluating, not via refit() ...

    control <- eval.parent(g1@call$control)
    res <- optTheta(g1, interval=interval, tol=tol, verbose=verbose,
                    control = c(control, nb.control))
    res
}

## do we want to facilitate profiling on theta??
## save evaluations used in optimize() fit?
## ('memoise'?)
## Again, I think that a reference class object would be a better approach.

Try the lme4 package in your browser

Any scripts or data that you put into this service are public.

lme4 documentation built on July 3, 2024, 5:11 p.m.