R/profilemix.metaplus.R

Defines functions profilemix.metaplus

profilemix.metaplus <- function(yi,sei,mods=NULL,justfit=FALSE,plotci=FALSE,slab=NULL,notrials,cores,start.vals=NULL) {
  
  isreg <- !is.null(mods)
  
  if (isreg) mods <- as.matrix(mods)

  rl2reg <- function(muhat,tau2,tau2out,lpoutlier,xcoef,yi,sei,mods,isreg,prop) {
    poutlier <- exp(lpoutlier)/(1+exp(lpoutlier))
    w <- 1.0/(tau2+sei^2)
    if (isreg) p1 <- -0.5*(log(2*pi)-log(w)+w*(yi-muhat-as.vector(mods %*% xcoef))^2)
    else p1 <-  -0.5*(log(2*pi)-log(w)+w*(yi-muhat)^2)
    w <- 1.0/(tau2out+sei^2)
    if (isreg) p2 <- -0.5*(log(2*pi)-log(w)+w*(yi-muhat-as.vector(mods %*% xcoef))^2)
    else p2 <- -0.5*(log(2*pi)-log(w)+w*(yi-muhat)^2)
    if (!missing(prop)) {
      ll <- prop*cbind(p1,p2)
      negll <- -sum(apply(l,1,sum))
    } else {
      l <- exp(cbind(log(1-poutlier)+p1,log(poutlier)+p2))
      negll <- -sum(log(apply(l,1,sum)))
    }
    if (is.nan(negll)) negll <- NA
    if (!is.finite(negll)) negll <- NA
    return(negll)
  }
  
  optimrl2reg <- function(p,lpoutlier,yi,sei,mods,isreg,prop,fixed) {
    p[names(fixed)] <- fixed
    return(rl2reg(p[1],p[2],p[3],lpoutlier,matrix(p[4:(3+dim(mods)[2])],ncol=1),yi,sei,mods,isreg,prop))
  }
  
  ll.profilemix <- function(par,yi,sei,mods) {
    isreg <- !missing(mods)
    muhat <- par[1]
    tau2 <- par[2]
    tau2out <- par[3]
    lpoutlier <- par[4]
    if (isreg) xcoef <- matrix(par[5:length(par)],ncol=1)
    poutlier <- exp(lpoutlier)/(1+exp(lpoutlier))
    w <- 1.0/(tau2+sei^2)
    if (isreg) ll1 <- -0.5*(log(2*pi)-log(w)+w*(yi-muhat-as.vector(mods %*% xcoef))^2)+log(1-poutlier)
    else ll1 <- -0.5*(log(2*pi)-log(w)+w*(yi-muhat)^2)+log(1-poutlier)
    w <- 1.0/(tau2out+sei^2)
    if (isreg) ll2 <- -0.5*(log(2*pi)-log(w)+w*(yi-muhat-as.vector(mods %*% xcoef))^2)+log(poutlier)
    else ll2 <- -0.5*(log(2*pi)-log(w)+w*(yi-muhat)^2)+log(poutlier)
    ll <- cbind(ll1,ll2)
    maxll <- rowMaxs(ll, value=TRUE)
    negll <- -sum(maxll+log(rowSums(exp(ll-maxll))))
    if (is.nan(negll)) negll <- NA
    if (!is.finite(negll)) negll <- NA
    if (is.na(negll)) negll <- 1e100
    return(negll)
  }      
  
  # obtain starting values
  if (is.null(start.vals)) {
    if (isreg) {
      start.meta <- makestart.profilemix.metaplus(yi=yi,sei=sei, mods=mods,notrials=notrials,cores=cores)$params
      start.val <- c(start.meta$muhat,start.meta$tau2,start.meta$tau2out,start.meta$lpoutlier,start.meta$xcoef)
      lower.val <- c(-Inf,0.0,0.0,-Inf,rep(-Inf,dim(mods)[2]))
    } else {
      start.meta <- makestart.profilemix.metaplus(yi=yi,sei=sei,notrials=notrials,cores=cores)$params
      start.val <- c(start.meta$muhat,start.meta$tau2,start.meta$tau2out,start.meta$lpoutlier)
      lower.val <- c(-Inf,0.0,0.0,-Inf)
    }
  }
  else {
    if (isreg) {
      currmuhat <- start.vals[1]
      currtau2 <- start.vals[2]
      currtau2out <- start.vals[3]
      currlpoutlier <- start.vals[4]
      currxcoef <- start.vals[5:length(start.vals)]
      lower.val <- c(-Inf,0.0,0.0,-Inf,rep(-Inf,dim(mods)[2]))
    } else {
      currmuhat <- start.vals[1]
      currtau2 <- start.vals[2]
      currtau2out <- start.vals[3]
      currlpoutlier <- start.vals[4]
       lower.val <- c(-Inf,0.0,0.0,-Inf)
    }
    # perform EM
    nem <- 0
    currll <- -Inf
     repeat {
      nem <- nem+1
      # expectation step
      currpoutlier <- exp(currlpoutlier)/(1+exp(currlpoutlier))
      w <- 1.0/(currtau2+sei^2)
      if (isreg) ll1 <- -0.5*(log(2*pi)-log(w)+w*(yi-currmuhat-as.vector(mods %*% currxcoef))^2)+log(1-currpoutlier)
      else ll1 <- -0.5*(log(2*pi)-log(w)+w*(yi-currmuhat)^2)+log(1-currpoutlier)
      w <- 1.0/(currtau2out+sei^2)
      if (isreg) ll2 <- -0.5*(log(2*pi)-log(w)+w*(yi-currmuhat-as.vector(mods %*% currxcoef))^2)+log(currpoutlier)
      else ll2 <- -0.5*(log(2*pi)-log(w)+w*(yi-currmuhat)^2)+log(currpoutlier)
      
      l <- exp(cbind(ll1,ll2))
      prop <- l/apply(l,1,sum)
      # maximisation step
      # calculate outlier proportion
      poutlier <- sum(prop[,2])/dim(prop)[1]
      currlpoutlier <- log(poutlier/(1-poutlier))
      
      if (isreg) {
        startvals <- c(currmuhat,currtau2,currtau2out,currxcoef)
        names(startvals) <- c("muhat","tau2","tau2out",dimnames(mods)[[2]])
      } else {
        startvals <- c(currmuhat,currtau2,currtau2out)
        names(startvals) <- c("muhat","tau2","tau2out")
      }
      # ????? convert to Nelder_mead
      if (isreg) results.nlm <- nlminb(startvals,optimrl2reg,
                                       #               control=list(trace=6),
                                       lower = c(-Inf,0,0,rep(-Inf,dim(mods)[2])),
                                       lpoutlier=currlpoutlier,
                                       prop=prop,
                                       yi=yi,sei=sei,mods=mods,
                                       isreg=isreg, fixed=NULL)
      else results.nlm <- nlminb(startvals,optimrl2reg,
                                 # control=list(trace=6),
                                 lower = c(-Inf,0,0),
                                 lpoutlier=currlpoutlier,
                                 prop=prop,
                                 yi=yi,sei=sei,mods=NULL,
                                 isreg=isreg, fixed=NULL)
      currmuhat <- as.numeric(results.nlm$par)[1]
      currtau2 <- as.numeric(results.nlm$par)[2]
      currtau2out <- as.numeric(results.nlm$par)[3]
      if (isreg) currxcoef <- matrix(as.numeric(results.nlm$par)[4:(3+dim(mods)[2])],ncol=1)
      else currxcoef <- NULL
      
      lastll <- currll
      currll <- -rl2reg(currmuhat,currtau2,currtau2out,currlpoutlier,currxcoef,yi,sei,mods,isreg)
      if (abs((lastll-currll)/currll)<1.0e-4) break()
      if (nem >1000) break()
    }
    if (isreg) {
      start.val <- c(currmuhat,currtau2,currtau2out,currlpoutlier,currxcoef)
    } else {
      start.val <- c(currmuhat,currtau2,currtau2out,currlpoutlier)
     }
  }
  if (isreg) {
    names(start.val) <- c("muhat","tau2","tau2out","currlpoutlier",dimnames(mods)[[2]])
  } else {
     names(start.val) <- c("muhat","tau2","tau2out","currlpoutlier")
  }
  names(lower.val) <- names(start.val)
  parnames(ll.profilemix) <- names(start.val)
  if (isreg)  profilemix.fit <- mymle(ll.profilemix,start=start.val,vecpar=TRUE,
                                      optimizer="user",optimfun=myoptim,
                                      skip.hessian=TRUE,
                                     data=list(yi=yi,sei=sei,mods=mods),
                                     lower=lower.val)
    else profilemix.fit <- mymle(ll.profilemix,start=start.val,vecpar=TRUE,
    							optimizer="user",optimfun=myoptim,
                               skip.hessian=TRUE,
                               data=list(yi=yi,sei=sei),
                               lower=lower.val)
  results <- profilemix.fit@coef
  
  profilemix.profiled <- NULL
  
  if (!justfit)  {
    notprofiled <- TRUE
    while (notprofiled) {
      if (isreg) thehessian <- hessian(ll.profilemix,results,method.args=list(d=0.01),yi=yi,sei=sei,mods=mods)
      else thehessian <- hessian(ll.profilemix,results,method.args=list(d=0.01),yi=yi,sei=sei)
      # tau2 and tau2out can be zero 
      isproblem <- (results<1.0e-6) & ((1:length(results) %in% c(2,3)))
      isproblem2 <- isproblem*(1:length(results))
      noproblem2 <- (1-isproblem)*(1:length(results))
      if (all(isproblem2==0)) thehessian2 <- thehessian
      else thehessian2 <- thehessian[-isproblem2,-isproblem2]
      themyse <- suppressWarnings(sqrt(diag(ginv(thehessian2))))
      # expand back to original length
      myse <- rep(0,length(results))
      myse[noproblem2] <- themyse
      if (isreg) whichp <- c(1,5:(4+dim(mods)[2]))
      else whichp <- 1
      myse[is.na(myse)] <- 1.0e-6
      profilemix.stderr <- myse
      profilemix.profiled <- profilemix.profile(profilemix.fit,which=whichp,std.err=profilemix.stderr, notrials=notrials, cores=cores)
      if (inherits(profilemix.profiled,"profile.mymle")) notprofiled <- FALSE
      else {
        thenames <- c("muhat","tau2","tau2out","lpoutlier")
        start.val <- profilemix.profiled@fullcoef
        if (isreg) {
          lower.val <- c(-Inf,0.0,0.0,-Inf,rep(-Inf,dim(mods)[2]))
          thenames <- c(thenames,dimnames(mods)[[2]])
        } else {
          lower.val <- c(-Inf,0.0,0.0,-Inf)
        }
        parnames(ll.profilemix) <- thenames
        names(start.val) <- thenames
        names(lower.val) <- thenames
        if (isreg) profilemix.fit <- mymle(ll.profilemix,start=start.val,vecpar=TRUE,
                                           optimizer="user",optimfun=myoptim,
                                           data=list(yi=yi,sei=sei,mods=mods),
                                           skip.hessian=TRUE,
                                           #control=list(eval.max=1000),
                                           lower=lower.val)
        else profilemix.fit <- mymle(ll.profilemix,start=start.val,vecpar=TRUE,
                                     optimizer="user",optimfun=myoptim,
                                     data=list(yi=yi,sei=sei),
                                     skip.hessian=TRUE,
                                     #control=list(eval.max=1000),
                                     lower=lower.val)
        results <- profilemix.fit@coef
      }
    }

    if (any(order(profilemix.profiled@profile$muhat$z)!=(1:length(profilemix.profiled@profile$muhat$z)))) 
      warning("Profile loglikelihood is not unimodal in region of estimate. Possibly incorrect confidence intervals.")

    profilemix.ci <- confint(profilemix.profiled,method="uniroot")
    
    if (plotci) {
      tryCatch(plot(profilemix.profiled),
               error= function(e) {
                 print(paste("Error in CI plot: ",e))
               })
    }
    
    
    theci <- matrix(rep(NA,length(profilemix.fit@coef)*2),ncol=2)
    theci[whichp,] <- profilemix.ci
    results <- cbind(results,theci)
    
    pvalues <- rep(NA,length(start.val))
    for (iparm in whichp) {
      fixedparm <- names(start.val)[iparm]
      if (isreg) dostart <- paste("newstart.meta <- makestart.profilemix.metaplus(yi,sei, mods,",
                                  "fixed=list(",fixedparm,"=0.0),notrials=notrials,cores=cores)$params","\n",sep="")
      else dostart <- paste("newstart.meta <- makestart.profilemix.metaplus(yi,sei, NULL,",
                            "fixed=list(",fixedparm,"=0.0),notrials=notrials,cores=cores)$params","\n",sep="")
      eval(parse(text=dostart))
      if (isreg) newstart.val <- c(newstart.meta$muhat,newstart.meta$tau2,newstart.meta$tau2out,newstart.meta$lpoutlier,newstart.meta$xcoef)
      else newstart.val <- c(newstart.meta$muhat,newstart.meta$tau2,newstart.meta$tau2out,newstart.meta$lpoutlier)
      names(newstart.val) <- names(start.val)
      #      newstart.val <- newstart.val[-iparm]
      newlower.val <- lower.val
      if (isreg) doprofile <- paste("profilemix.fit0 <- mymle(ll.profilemix,start=newstart.val,vecpar=TRUE,\n",
                                    "optimizer='user',optimfun=myoptim,data=list(yi=yi,sei=sei,mods=mods),\n",
                                    "skip.hessian=TRUE,\n",
                                    "lower=newlower.val,fixed=list(",fixedparm,"=0.0))",sep="")
      else doprofile <- paste("profilemix.fit0 <- mymle(ll.profilemix,start=newstart.val,vecpar=TRUE,\n",
                              "optimizer='user',optimfun=myoptim,data=list(yi=yi,sei=sei),\n",
                              "skip.hessian=TRUE,\n",
                              "lower=newlower.val,fixed=list(",fixedparm,"=0.0))",sep="")
      eval(parse(text=doprofile))
      pvalues[iparm] <- anova(profilemix.fit,profilemix.fit0)[2,5]
    }
    results <- cbind(results,pvalues)
    dimnames(results)[[2]] <- c("Est.","95% ci.lb","95% ci.ub","pvalue")
    # transform lpoutlier to poutlier
    dimnames(results)[[1]][4] <- "Outlier prob."
    results[4,1] <- 1.0/(1+exp(-results[4,1]))
  }

  # calculate final posterior probabilities
  muhat <- profilemix.fit@coef[1]
  tau2 <- profilemix.fit@coef[2]
  tau2out <- profilemix.fit@coef[3]
  lpoutlier <- profilemix.fit@coef[4]
  if (isreg) xcoef <- matrix(profilemix.fit@coef[5:length(profilemix.fit@coef)],ncol=1)
  
  poutlier <- exp(lpoutlier)/(1+exp(lpoutlier))
  
  w <- 1.0/(tau2+sei^2)
  if (isreg) ll1 <- -0.5*(log(2*pi)-log(w)+w*(yi-muhat-as.vector(mods %*% xcoef))^2)
  else ll1 <- -0.5*(log(2*pi)-log(w)+w*(yi-muhat)^2)
  w <- 1.0/(tau2out+sei^2)
  if (isreg) ll2 <- -0.5*(log(2*pi)-log(w)+w*(yi-muhat-as.vector(mods %*% xcoef))^2)
  else ll2 <- -0.5*(log(2*pi)-log(w)+w*(yi-muhat)^2)

  ll <- cbind(ll1+log(1-poutlier),ll2+log(poutlier))
  lmax <- exp(ll-rowMaxs(ll, value=TRUE))
  prop <- lmax/rowSums(lmax)
  return(list(results=results,yi=yi,sei=sei,mods=mods,slab=slab,fittedmodel=profilemix.fit,
              outlier.prob=prop[,2],justfit=justfit,profile=profilemix.profiled,random="mixture"))
}

Try the metaplus package in your browser

Any scripts or data that you put into this service are public.

metaplus documentation built on July 4, 2024, 5:08 p.m.