| interval.logitsurv.discrete | R Documentation | 
   logit(P(T >t | x)) = log(G(t)) + x \beta
   P(T >t | x) =  \frac{1}{1 + G(t) exp( x \beta) }
interval.logitsurv.discrete(
  formula,
  data,
  beta = NULL,
  no.opt = FALSE,
  method = "NR",
  stderr = TRUE,
  weights = NULL,
  offsets = NULL,
  exp.link = 1,
  increment = 1,
  ...
)
| formula | formula | 
| data | data | 
| beta | starting values | 
| no.opt | optimization TRUE/FALSE | 
| method | NR, nlm | 
| stderr | to return only estimate | 
| weights | weights following id for GLM | 
| offsets | following id for GLM | 
| exp.link | parametrize increments exp(alpha) > 0 | 
| increment | using increments dG(t)=exp(alpha) as parameters | 
| ... | Additional arguments to lower level funtions lava::NR optimizer or nlm | 
This is thus also the cumulative odds model, since
   P(T \leq t | x) =  \frac{G(t) \exp(x \beta) }{1 + G(t) exp( x \beta) }
The baseline G(t) is written as cumsum(exp(\alpha)) and this is not the standard
parametrization that takes log of G(t) as the parameters.
Input are intervals given by ]t_l,t_r] where t_r can be infinity for right-censored intervals When truly discrete ]0,1] will be an observation at 1, and ]j,j+1] will be an observation at j+1
Likelihood is maximized:
 \prod  P(T_i >t_{il} | x) - P(T_i> t_{ir}| x) 
Thomas Scheike
data(ttpd) 
dtable(ttpd,~entry+time2)
out <- interval.logitsurv.discrete(Interval(entry,time2)~X1+X2+X3+X4,ttpd)
summary(out)
pred <- predictlogitSurvd(out,se=FALSE)
plotSurvd(pred)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.