View source: R/mediator-survival.R
mediatorSurv | R Documentation |
Mediation analysis in survival context with robust standard errors taking the weights into account via influence function computations. Mediator and exposure must be factors. This is based on numerical derivative wrt parameters for weighting. See vignette for more examples.
mediatorSurv(
survmodel,
weightmodel,
data = data,
wdata = wdata,
id = "id",
silent = TRUE,
...
)
survmodel |
with mediation model (binreg, aalenMets, phreg) |
weightmodel |
mediation model |
data |
for computations |
wdata |
weighted data expansion for computations |
id |
name of id variable, important for SE computations |
silent |
to be silent |
... |
Additional arguments to survival model |
Thomas Scheike
n <- 400
dat <- kumarsimRCT(n,rho1=0.5,rho2=0.5,rct=2,censpar=c(0,0,0,0),
beta = c(-0.67, 0.59, 0.55, 0.25, 0.98, 0.18, 0.45, 0.31),
treatmodel = c(-0.18, 0.56, 0.56, 0.54),restrict=1)
dfactor(dat) <- dnr.f~dnr
dfactor(dat) <- gp.f~gp
drename(dat) <- ttt24~"ttt24*"
dat$id <- 1:n
dat$ftime <- 1
weightmodel <- fit <- glm(gp.f~dnr.f+preauto+ttt24,data=dat,family=binomial)
wdata <- medweight(fit,data=dat)
### fitting models with and without mediator
aaMss2 <- binreg(Event(time,status)~gp+dnr+preauto+ttt24+cluster(id),data=dat,time=50,cause=2)
aaMss22 <- binreg(Event(time,status)~dnr+preauto+ttt24+cluster(id),data=dat,time=50,cause=2)
### estimating direct and indirect effects (under strong strong assumptions)
aaMss <- binreg(Event(time,status)~dnr.f0+dnr.f1+preauto+ttt24+cluster(id),
data=wdata,time=50,weights=wdata$weights,cause=2)
## to compute standard errors , requires numDeriv
library(numDeriv)
ll <- mediatorSurv(aaMss,fit,data=dat,wdata=wdata)
summary(ll)
## not run bootstrap (to save time)
## bll <- BootmediatorSurv(aaMss,fit,data=dat,k.boot=500)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.