View source: R/twin.clustertrunc.r
twin.clustertrunc | R Documentation |
Estimation of twostage model with cluster truncation in bivariate situation
twin.clustertrunc(
survformula,
data = parent.frame(),
theta.des = NULL,
clusters = NULL,
var.link = 1,
Nit = 10,
final.fitting = FALSE,
...
)
survformula |
Formula with survival model aalen or cox.aalen, some limitiation on model specification due to call of fast.reshape (so for example interactions and * and : do not work here, expand prior to call) |
data |
Data frame |
theta.des |
design for dependence parameters in two-stage model |
clusters |
clustering variable for twins |
var.link |
exp link for theta |
Nit |
number of iteration |
final.fitting |
TRUE to do final estimation with SE and ... arguments for marginal models |
... |
Additional arguments to lower level functions |
Thomas Scheike
library("timereg")
data(diabetes)
v <- diabetes$time*runif(nrow(diabetes))*rbinom(nrow(diabetes),1,0.5)
diabetes$v <- v
aout <- twin.clustertrunc(Surv(v,time,status)~1+treat+adult,
data=diabetes,clusters="id")
aout$two ## twostage output
par(mfrow=c(2,2))
plot(aout$marg) ## marginal model output
out <- twin.clustertrunc(Surv(v,time,status)~1+prop(treat)+prop(adult),
data=diabetes,clusters="id")
out$two ## twostage output
plot(out$marg) ## marginal model output
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.