R/asymcoef.R

#' Coefficient of extremal asymmetry
#'
#' This function implements estimators of the bivariate
#'  coefficient of extremal asymmetry proposed in
#'  Semadeni's (2021) PhD thesis.
#'  Two estimators are implemented: one based on empirical distributions, the second using empirical likelihood.
#' @details Let \code{U}, \code{V} be uniform random variables and define the partial extremal dependence coefficients
#' \eqn{\varphi_{+}(u) = \Pr(V > U | U > u, V > u)},
#' \eqn{\varphi_{-}(u) = \Pr(V < U | U > u, V > u)} and
#' \eqn{\varphi_0(u) = \Pr(V = U | U > u, V > u)}
#' Define
#' \deqn{ \varphi(u) = \frac{\varphi_{+} - \varphi_{-}}{\varphi_{+} + \varphi_{-}}}
# and the coefficient of extremal asymmetry as \eqn{\varphi = \lim_{u \to 1} \varphi(u)}.
#'
#' The empirical likelihood estimator, derived for max-stable vectors with unit Frechet margins, is
#' \deqn{\frac{\sum_i p_i I(w_i \leq 0.5) - 0.5}{0.5 - 2\sum_i p_i(0.5-w_i) I(w_i \leq 0.5)}}
#' where \eqn{p_i} is the empirical likelihood weight for observation \eqn{i} and \eqn{w_i} is the pseudo-angle associated to the first coordinate.
#' @param data an \code{n} by 2 matrix of observations
#' @param u vector of probability levels at which to evaluate extremal asymmetry
#' @param nq integer; number of quantiles at which to evaluate the coefficient if \code{u} is \code{NULL}
#' @param qlim a vector of length 2 with the probability limits for the quantiles
#' @param method string indicating the estimation method, one of \code{empirical} or empirical likelihood (\code{emplik})
#' @param confint string for the method used to derive confidence intervals, either \code{none} (default) or a nonparametric \code{bootstrap}
#' @param level probability level for confidence intervals, default to 0.95 or bounds for the interval
#' @param B integer; number of bootstrap replicates (if applicable)
#' @param ties.method string; method for handling ties. See the documentation of \link[base]{rank} for available options.
#' @param plot logical; if \code{TRUE}, return a plot.
#' @param ... additional parameters for plots
#' @return an invisible data frame with columns
#' \describe{
#' \item{\code{threshold}}{vector of thresholds on the probability scale}
#' \item{\code{coef}}{extremal asymmetry coefficient estimates}
#' \item{\code{confint}}{either \code{NULL} or a matrix with two columns containing the lower and upper bounds for each threshold}
#' }
#' @references Semadeni, C. (2020). Inference on the Angular Distribution of Extremes, PhD thesis, EPFL, no. 8168.
#' @examples
#' \dontrun{
#' samp <- rmev(n = 1000,
#'              d = 2,
#'              param = 0.2,
#'              model = "log")
#' xasym(samp, confint = "wald")
#' xasym(samp, method = "emplik")
#' }
#' @export
xasym <- function (data,
                      u = NULL,
                      nq = 40,
                      qlim = c(0.8, 0.99),
                      method = c("empirical","emplik"),
                      confint = c("none", "wald", "bootstrap"),
                      level = 0.95,
                      B = 999L,
                      # trunc = TRUE,
                      ties.method = "random",
                      plot = TRUE, ...) {
  if(!inherits(data, "matrix")){
    stop("\"data\" must be a matrix.")
  }
  if(ncol(data) != 2L){
    stop("\"xdat\" must be a matrix with two columns.")
  }
  n <- nrow(data)
  method <- match.arg(method)
  confint <- match.arg(confint)
  if(length(qlim) != 2L){
    stop("\"qlim\" must be a bivariate numeric vector.")
  }
  if(qlim[1] < 0 || qlim[2] >= 1){
    stop("\"qlim\" must contain probabilities.")
  }
  ties.method <- match.arg(ties.method,
                         choices = c("average", "first", "last", "random", "max", "min"),
                         several.ok = FALSE)
  if(isTRUE(any(c(level < 0, level > 1)))){
    stop("Invalid \"level\" argument: argument must be in the unit interval.")
  }
  if(length(level) == 2L){
    qulevels <- sort(level)
  } else if(length(level) == 1L){
    qulevels <- c((1 - level[1])/2,
                  1-(1 - level[1])/2)
  } else{
    stop("Invalid \"level argument: must be a vector of length 1 or 2.")
  }
datarank <- apply(X = data,
                  MARGIN = 2,
                  FUN = rank,
                  ties.method = ties.method)
rowmin <- apply(datarank, 1, min)
# Sort data by decreasing minimum
# (this will simplify computational burden)
# as we only need to keep track
# of indices of exceedances above the
# smallest threshold
od <- order(rowmin, decreasing = TRUE)
pos_fn <- function(vector, scalar){
  which.max(vector <= scalar) - 1L
}
datarank <- datarank[od,]
rowmin <- rowmin[od]
# Pick quantiles
eps <- .Machine$double.eps^0.5
qlim2 <- c(min(apply(datarank, 1, max)) / (n + 1) + eps,
           rowmin[1] / (n + 1) - eps)
if(is.null(u)){
  if (!is.null(qlim)) {
    if (qlim[1] < qlim2[1]){
      stop("lower quantile limit is too low")
    }
    if (qlim[2] > qlim2[2]) {
      stop("upper quantile limit is too high")
    }
    if (qlim[1] > qlim[2]) {
      stop("lower quantile limit is less than upper quantile limit")
    }
  }  else{ qlim <- qlim2
  }
  u <- seq(qlim[1], qlim[2], length = nq)
} else{
  u <- sort(u)
}
  nq <- length(u)
  if(min(u) < qlim2[1] || max(u) >  qlim2[2]){
    warning("Upper quantile limit is too high or lower quantile limit is too low")
  }

# Compute empirical coefficient
if(method == "empirical"){
  empirical_coef <- function(u,
                             rkdata,
                             rowMin = NULL,
                             ordered = TRUE,
                             retList = FALSE){
    asym_coef_v <- vector(mode = "numeric",
                          length = nq)
    nk_v <- psiplus_v <- vector(mode = "integer",
                                length = nq)
    th <- u * (nrow(rkdata) + 1L)
    if(is.null(rowMin)){
      rowMin <- apply(rkdata, 1, min)
      ordered <- FALSE
    }
    if(!ordered){
      od <- order(rowMin, decreasing = TRUE)
      rowMin <- rowMin[od]
      rkdata <- rkdata[od,]
    }
    for(i in seq_along(th)){
      mind <- pos_fn(rowMin, th[i])
      # Perhaps superfluous, but can have ties
      psiplus <- sum(rkdata[seq_len(mind), 1] < rkdata[seq_len(mind), 2])
      psiminus <- sum(rkdata[seq_len(mind), 2] < rkdata[seq_len(mind), 1])
      nk_v[i] <- sum(psiplus + psiminus)
      psiplus_v[i] <- psiplus
      asym_coef_v[i] <- (psiplus - psiminus)/nk_v[i]
    }
    if(retList){
      list(m = nk_v,
           psiplus = psiplus_v,
           coef = asym_coef_v)
    } else{
    return(asym_coef_v)
    }
  }
  xasym_res <- empirical_coef(u = u,
                 rkdata = datarank,
                 rowMin = rowmin,
                 ordered = TRUE,
                 retList = TRUE)
  est <- xasym_res$coef
  if(confint == "bootstrap"){
    boot_xasym <- matrix(0, ncol = nq, nrow = B+1L)
    boot_xasym[1,] <- est
    for(b in seq_len(B)){
      boot_xasym[b+1L, ] <-
        empirical_coef(
          u = u,
          rkdata = apply(data[sample.int(n, size = n,
                                         replace = TRUE),],
                         2,
                         rank,
                         ties.method = ties.method),
                               ordered = FALSE)
    }
    conf_int <- t(apply(boot_xasym, 2,
                     quantile,
                     probs = qulevels,
                     na.rm = TRUE))
  } else if(confint == "wald"){
    variance <- with(xasym_res,
                     4*psiplus/m*(1-psiplus/m)/m)
    conf_int <- cbind(est + qnorm(qulevels[1])*sqrt(variance),
                      est + qnorm(qulevels[2])*sqrt(variance))
  }
} else if(method == "emplik"){

  # Function to compute empirical likelihood-based estimator
  xcoef_fun_emplik <- function(angles, weights){
    (sum(weights*(angles < 0.5)) - 0.5) /
      (0.5 -sum(weights*(1-2*angles)*(angles < 0.5)))
  }

  if(confint == "wald"){
    warning("Method not implemented for\n the empirical likelihood-based estimator.")
  confint <- 'none'
  }

  # Execute calculations inside loop
  emplik_coef <- function(u,
                          rkdata,
                          rowMin = NULL,
                          ordered = TRUE){
    if(is.null(rowMin)){
      rowMin <- apply(rkdata, 1, min)
      ordered <- FALSE
    }
    if(!ordered){
      od <- order(rowMin, decreasing = TRUE)
      rowMin <- rowMin[od]
      rkdata <- rkdata[od,]
    }
    # Use ordering to speed up calculations
    th_ind <- sapply(u*(nrow(rkdata)+1),
                     function(ui){pos_fn(rowMin, ui)})
    # Only transform exceedances above smallest threshold
    frechet <- -1/(log(rkdata[1:th_ind[1],])-log(nrow(rkdata)+1))
    angs <- frechet[,1, drop = FALSE]/rowSums(frechet)
  est <- vector("numeric", length = length(u))
  for(i in seq_along(u)){
    emplik_sol <- try(
      suppressWarnings(
      angmeas(x = angs[1:th_ind[i],, drop = FALSE],
                          th = 0,
                          wgt = "Empirical",
                          is.angle = TRUE)))
    if(!inherits(emplik_sol, what = "try-error")){
 est[i] <- xcoef_fun_emplik(angles = as.vector(emplik_sol$ang),
                            weights = emplik_sol$wts)
    } else{
      est[i] <- NA
    }
  }
  return(est)
  }
  est <- emplik_coef(u = u,
                     rkdata = datarank,
                     rowMin = rowmin,
                     ordered = TRUE)
  if(confint == "bootstrap"){
    boot_xasym <- matrix(0, ncol = nq, nrow = B+1L)
    boot_xasym[1,] <- est
    for(b in seq_len(B)){
      boot_xasym[b+1L, ] <-
        emplik_coef(
          u = u,
          rkdata = apply(data[sample.int(n,
                                         size = n,
                                         replace = TRUE),],
                         2,
                         rank,
                         ties.method = ties.method),
          ordered = FALSE)
    }
    conf_int <- t(apply(boot_xasym, 2,
                        quantile,
                        probs = qulevels,
                        na.rm = TRUE))
  }
}
   if(plot){
     ellips <- list(...)
     if(is.null(ellips$bty)){
       ellips$bty <- 'l'
     }
      if(is.null(ellips$xlab)){
       ellips$xlab <- "probability level"
     }
     if(is.null(ellips$ylab)){
       ellips$ylab = "extremal asymmetry"
     }
     if(is.null(ellips$pch)){
       ellips$pch <- 20
     }
     if(is.null(ellips$ylim)){
       ellips$ylim <- c(-1,1)
     }
     if(is.null(ellips$yaxs)){
       ellips$yaxs <- "i"
     }
     ellips$x <- u
     ellips$y <- est
    do.call("plot", ellips)
     if(confint != "none"){
       lines(u, conf_int[,1], lty = 2)
       lines(u, conf_int[,2], lty = 2)
     }
   }
  if(confint == "none"){
  return(invisible(
    data.frame(threshold = u,
               coef = est)))
  } else{
    return(invisible(
      data.frame(threshold = u,
                 coef = est,
                 lower = pmax(-1, conf_int[,1]),
                 upper = pmin(1, conf_int[,2]))))
  }
}

Try the mev package in your browser

Any scripts or data that you put into this service are public.

mev documentation built on April 26, 2022, 1:07 a.m.