Nothing
# scl: scalor to check
# scalor_name: name to print in info
# is_primed: whether the scalor is already primed. If so, the expectation that unprimed scalor gives an error will not be checked.
expect_scalor = function(scl, scalor_name, can_oversample = TRUE, is_primed = FALSE) {
expect_r6(scl, "Scalor", info = scalor_name)
p = ps(ParamLgl. = p_lgl(), ParamDbl. = p_dbl(0, 1), ParamInt. = p_int(0, 1), ParamFct. = p_fct(c("a", "b", "c")))
pbig = ps(ParamLgl. = p_lgl(), ParamDbl. = p_dbl(0, 1), ParamInt. = p_int(0, 1), ParamFct. = p_fct(c("a", "b", "c")),
ParamLgl.1 = p_lgl(), ParamDbl.1 = p_dbl(0, 1), ParamInt.1 = p_int(0, 1), ParamFct.1 = p_fct(c("a", "b", "c")))
p_forbidden = p$clone(deep = TRUE)$subset(ids = setdiff(p$ids(), paste0(scl$param_classes, ".")))
if (length(p_forbidden$ids())) {
expect_error(scl$prime(p_forbidden), "Must be a subset of", info = scalor_name)
}
p_allowed = p$clone(deep = TRUE)$subset(ids = paste0(scl$param_classes, "."))
pvals_allowed = generate_design_random(p_allowed, 3)$data
if (!is_primed) {
expect_error(scl$operate(pvals_allowed, seq_len(nrow(pvals_allowed))), "must be primed first", info = scalor_name)
}
pbig_allowed = pbig$clone(deep = TRUE)$subset(ids = c(paste0(scl$param_classes, "."), paste0(scl$param_classes, ".1")))
pbigvals_allowed = generate_design_random(pbig_allowed, 3)$data
scl$prime(pbig_allowed)
expect_equal(scl$primed_ps, pbig_allowed)
expect_error(scl$operate(pvals_allowed, seq_len(nrow(pvals_allowed))), "[mM]ust be a (permutation of set|set equal to)")
scl$prime(p_allowed)
expect_error(scl$operate(pbigvals_allowed, seq_len(nrow(pbigvals_allowed))), "Parameter .*\\.1.*not available")
test_alloweds = function(data, pp) {
scl$prime(pp)
if ("single-crit" %in% scl$supported) {
expect_numeric(scl$operate(data, seq_len(nrow(data))), finite = TRUE, any.missing = FALSE, len = nrow(data))
}
if ("multi-crit" %in% scl$supported) {
expect_numeric(scl$operate(data, matrix(seq_len(nrow(data) * 3), ncol = 3)), finite = TRUE, any.missing = FALSE, len = nrow(data))
}
}
test_alloweds(pvals_allowed, p_allowed)
test_alloweds(as.data.frame(pvals_allowed), p_allowed)
test_alloweds(pvals_allowed[1], p_allowed)
p_allowed_one = p_allowed$clone(deep = TRUE)$subset(p_allowed$ids()[[1]])
test_alloweds(pvals_allowed[, 1, with = FALSE], p_allowed_one)
test_alloweds(pvals_allowed[1, 1, with = FALSE], p_allowed_one)
if (miesmuschel:::paradox_s3) {
p_allowed_multicol = ParamSet$new(sapply(letters[1:3], function(x) {
p_allowed$get_domain(p_allowed$ids()[[1]])
}, simplify = FALSE))
} else {
p_allowed_multicol = ParamSet$new(lapply(letters[1:3], function(x) {
par = p_allowed$params[[1]]$clone(deep = TRUE)
par$id = x
par
}))
}
pvals_allowed_multicol = generate_design_random(p_allowed_multicol, 3)$data
expect_error(scl$operate(pvals_allowed_multicol, seq_len(nrow(pvals_allowed_multicol)), 1), "Parameter 'a' not available", info = scalor_name)
test_alloweds(pvals_allowed_multicol, p_allowed_multicol)
test_alloweds(pvals_allowed_multicol[1], p_allowed_multicol)
expect_false(scl$endomorphism)
}
ScalorDebug = R6::R6Class("ScalorDebug",
inherit = Scalor,
public = list(
handler = NULL,
initialize = function(handler, param_classes = c("ParamLgl", "ParamInt", "ParamDbl", "ParamFct"), param_set = ps(), supported = c("single-crit", "multi-crit")) {
sclf$handler = assert_function(handler, args = c("v", "f", "p"), ordered = TRUE)
super$initialize(param_classes = param_classes, param_set = param_set, supported = supported)
}
),
private = list(
.scale = function(values, fitnesses) {
sclf$handler(v = values, f = fitnesses, p = sclf$param_set$values)
}
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.