The Modern Industrial Statistics Package

Share:

Description

This R package is providing all the data sets and statistical analysis of Modern Industrial Statistics, with applications using R, MINITAB and JMP by R.S. Kenett and S. Zacks with contributions by D. Amberti, John Wiley and Sons, 2013. This second revised and expanded second edition.

Details

Package: mistat
Type: Package
Date: 2012-08-22
License: GPL >= 2

Author(s)

Daniele Amberti

Maintainer: Daniele Amberti <amberti@inwind.it>

See Also

Bootstrap Resampling, Quality Control Charts, Operating Characteristics of an Acceptance Sampling Plan, Quality Control Charts, Fractional Factorial 2-level designs.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
data(OELECT)
data(OELECT1)

randomizationTest(list(a=OELECT, b=OELECT1), 
                  R=500, calc=mean, 
                  fun=function(x) x[1]-x[2],
                  seed=123)

Ps <- pistonSimulation(
  m = rep(60, 100),
  s = rep(0.02, 100),
  v0 = rep(0.01, 100),
  k = rep(5000, 100),
  p0 = rep(110000, 100),
  t = c(rep(296,35), 296*1.1^(1:65)),
  t0 = rep(360, 100),
  each = 1, 
  seed = 123,
  check = FALSE)

head(Ps)

cusumArl(mean= 0.0, 
         N=100,  
         limit=5000,
         seed=123)

powerCircuitSimulation(seed=123, each=3)

set.seed(123)

Ttf <- rgamma(50, 
              shape=2, 
              scale=100)

Ttr <- rgamma(50, 
              shape=2, 
              scale=1)
              
AvailEbd <- availDis(ttf=Ttf,  
                     ttr=Ttr, 
                     n=1000, seed=123)


RenewEbd <- renewDis(ttf=Ttf, 
                     ttr=Ttr, 
                     time=1000, 
                     n=1000)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.