# powerCircuitSimulation: The Power Circuit Simulator In mistat: Data Sets, Functions and Examples from the Book: "Modern Industrial Statistics" by Kenett, Zacks and Amberti

## Description

A simulator of a voltage conversion power circuit. The target output voltage of the power circuit is 220 volts DC. The circuit consists of 10 resistances labeled A to J, and 3 transistors, labeled K to M. These components can be purchased with different tolerance grades.

## Usage

 ``` 1 2 3 4 5 6 7 8 9 10 11``` ```powerCircuitSimulation(rsA = 8200, rsB = 220000, rsC = 1000, rsD = 33000, rsE = 56000, rsF = 5600, rsG = 3300, rsH = 58.5, rsI = 1000, rsJ = 120, trK = 130, trL = 100, trM = 130, tlA = 5, tlB = 10, tlC = 10, tlD = 5, tlE = 5, tlF = 5, tlG = 10, tlH = 5, tlI = 5, tlJ = 5, tlK = 5, tlL = 10, tlM = 5, each = 50, seed = NA) ```

## Arguments

 `rsA` the resistance (Ω) of A. A single value or a vector of length n. `rsB` the resistance (Ω) of B. A single value or a vector of length n. `rsC` the resistance (Ω) of C. A single value or a vector of length n. `rsD` the resistance (Ω) of D. A single value or a vector of length n. `rsE` the resistance (Ω) of E. A single value or a vector of length n. `rsF` the resistance (Ω) of F. A single value or a vector of length n. `rsG` the resistance (Ω) of G. A single value or a vector of length n. `rsH` the resistance (Ω) of H. A single value or a vector of length n. `rsI` the resistance (Ω) of I. A single value or a vector of length n. `rsJ` the resistance (Ω) of J. A single value or a vector of length n. `trK` the resistance (Ω) of K. A single value or a vector of length n. `trL` the resistance (Ω) of L. A single value or a vector of length n. `trM` the resistance (Ω) of M. A single value or a vector of length n. `tlA` the tolerance of A. It is a number > 0 (e.g. 5% is 5.0) `tlB` the tolerance of B. It is a number > 0 (e.g. 5% is 5.0) `tlC` the tolerance of C. It is a number > 0 (e.g. 5% is 5.0) `tlD` the tolerance of D. It is a number > 0 (e.g. 5% is 5.0) `tlE` the tolerance of E. It is a number > 0 (e.g. 5% is 5.0) `tlF` the tolerance of F. It is a number > 0 (e.g. 5% is 5.0) `tlG` the tolerance of G. It is a number > 0 (e.g. 5% is 5.0) `tlH` the tolerance of H. It is a number > 0 (e.g. 5% is 5.0) `tlI` the tolerance of I. It is a number > 0 (e.g. 5% is 5.0) `tlJ` the tolerance of J. It is a number > 0 (e.g. 5% is 5.0) `tlK` the tolerance of K. It is a number > 0 (e.g. 5% is 5.0) `tlL` the tolerance of L. It is a number > 0 (e.g. 5% is 5.0) `tlM` the tolerance of M. It is a number > 0 (e.g. 5% is 5.0) `each` non-negative integer. Each element of previous parameters is repeated `each` times. `seed` a single value, interpreted as an integer. If specified make the simulation replicable.

## Details

Factors affect the voltage output V via a chain of nonlinear equations:

volts=(136.67(a+(b/Z(10)))+d(c+e)(g/f)-h)/(1+d(e/f)+b[(1/Z(10))+0.006(1+(13.67/Z(10)))]+0.08202a)

where

a=Z(2)/(Z(1)+Z(2))

b=(1/(Z(12)+Z(13)))(Z(3)+(Z(1)Z(2)/(Z(1)+Z(2))))+Z(9)

c=Z(5)+Z(7)/2

d=Z(11)(Z(1)Z(2))/(Z(1)+Z(2))

e=Z(6)+Z(7)/2

f=(c+e)(1+Z(11))Z(8)+ce

g=0.6+Z(8)

h=1.2

with Z(1),…,Z(10) resistances in Ω of the 10 resistances and Z(11),Z(12),Z(13) are the h_{FE} values of three transistors.

## Value

A data frame, a matrix-like structure, with `each` * n rows and with columns:

 rsA numeric value of `rsA` rsB numeric value of `rsB` rsC numeric value of `rsC` rsD numeric value of `rsD` rsE numeric value of `rsE` rsF numeric value of `rsF` rsG numeric value of `rsG` rsH numeric value of `rsH` rsI numeric value of `rsI` rsJ numeric value of `rsJ` trK numeric value of `trK` trL numeric value of `trL` trM numeric value of `trM` tlA numeric value of `tlA` tlB numeric value of `tlB` tlC numeric value of `tlC` tlD numeric value of `tlD` tlE numeric value of `tlE` tlF numeric value of `tlF` tlG numeric value of `tlG` tlH numeric value of `tlH` tlI numeric value of `tlI` tlJ numeric value of `tlJ` tlK numeric value of `tlK` tlL numeric value of `tlL` tlM numeric value of `tlM` volts numeric output in volts (V)

Daniele Amberti

## References

Kenett, R., Zacks, S. with contributions by Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB and JMP. Wiley.

`pistonSimulation`, `simulationGroup`
 `1` ```powerCircuitSimulation(seed=123, each=3) ```