R/print.mitml.summary.R

Defines functions print.mitml.summary

print.mitml.summary <- function(x, ...){
# print method for objects of class "summary.mitml"

  cl <- x$call
  vrs <- x$model
  itr <- x$iter
  ngr <- x$ngr
  mdr <- x$missing.rates
  conv <- x$conv
  isML <- attr(x$model, "is.ML")
  isL2 <- attr(x$model, "is.L2")

  # print general information
  cat("\nCall:\n", paste(deparse(cl)), sep = "\n")
  cat("\n")

  if(isL2) cat("Level 1:\n", collapse = "\n")
  if(isML) cat(formatC("Cluster variable:", width=-25), vrs$clus, sep = " ", collapse = "\n")
  cat(formatC("Target variables:", width=-25), vrs$yvrs, collapse = "\n")
  cat(formatC("Fixed effect predictors:", width=-25), vrs$pvrs, collapse = "\n")
  if(isML) cat(formatC("Random effect predictors:", width=-25), vrs$qvrs, collapse = "\n")

  if(isL2){
    cat("\n")
    cat(formatC("Level 2:\n", width=-25), collapse = "\n")
    cat(formatC("Target variables:", width=-25), vrs$yvrs.L2, collapse = "\n")
    cat(formatC("Fixed effect predictors:", width=-25), vrs$pvrs.L2, collapse = "\n")
  }

  cat("\nPerformed", sprintf("%.0f", itr$burn), "burn-in iterations, and generated", sprintf("%.0f", itr$m),
      "imputed data sets,\neach", sprintf("%.0f", itr$iter), "iterations apart.",
      if(ngr>1){c("\nImputations were carried out seperately within", sprintf("%.0f", ngr), "groups.")}, "\n")

  # print convergence diagnostics
  if(!is.null(conv)){

    # note for reduced chains
    if(x$keep.chains != "full"){
      cat("\nNote: Convergence criteria were calculated from a reduced set of\nparameters (setting: ",
          x$keep.chains, ").\n", sep = "")
    }

    for(cc in attr(conv, "stats")){

      # summary for Rhat and SDprop
      if(cc == "Rhat" || cc == "SDprop"){

        cout <- matrix(c( sapply(conv, function(z) min(z[,cc])),
                  sapply(conv, function(z) quantile(z[,cc], .25)),
                  sapply(conv, function(z) mean(z[,cc])),
                  sapply(conv, function(z) median(z[,cc])),
                  sapply(conv, function(z) quantile(z[,cc], .75)),
                  sapply(conv, function(z) max(z[,cc])) ), ncol = 6 )
        rownames(cout) <- c("Beta:", if(isL2) "Beta2:", if(isML) "Psi:", "Sigma:")
        colnames(cout) <- c("Min", "25%", "Mean", "Median", "75%", "Max")
        clab <- switch(cc, Rhat = "\nPotential scale reduction (Rhat, imputation phase):\n",
                           SDprop = "\nGoodness of approximation (imputation phase):\n")
        cat(clab, "\n")
        print.table(round(cout, 3))

        clab <- switch(cc, Rhat = "\nLargest potential scale reduction:\n",
                           SDprop = "\nPoorest approximation:\n")
        cat(clab)
        maxval <- lapply(conv, function(a) a[which.max(a[,cc]), 1:2])
        cat("Beta: [", paste(maxval$beta, collapse = ",") ,"], ",
            if(isL2) paste0("Beta2: [", paste(maxval$beta2, collapse = ",") ,"], "),
            if(isML) paste0("Psi: [", paste(maxval$psi, collapse = ",") ,"], "),
            "Sigma: [", paste(maxval$sigma, collapse = ",") ,"]\n", sep = "")

      }

      # summary for ACF
      if(cc == "ACF"){

        cout <- c( sapply(conv, function(z) mean(z[,"lag-1"])),
                   sapply(conv, function(z) mean(z[,"lag-k"])),
                   sapply(conv, function(z) mean(z[,"lag-2k"])),
                   sapply(conv, function(z) max(z[,"lag-1"])),
                   sapply(conv, function(z) max(z[,"lag-k"])),
                   sapply(conv, function(z) max(z[,"lag-2k"])) )
        neg <- cout<0
        cout <- sprintf(cout, fmt = "%.3f")
        cout[neg] <- gsub("^-0", "-", cout[neg])
        cout[!neg] <- gsub("^0", " ", cout[!neg])
        cout <- matrix(cout, 2+isML+isL2, 6)
        cout <- rbind(c(" Lag1", " Lagk", "Lag2k", " Lag1", " Lagk", "Lag2k"), cout)
        rownames(cout) <- c("", "Beta:", if(isL2) "Beta2:", if(isML) "Psi:", "Sigma:")
        colnames(cout) <- c(" Mean", "", "", " Max", "", "")
        cat("\nAutocorrelation (ACF, imputation phase):\n\n")
        print.table(cout)

        cat("\nLargest autocorrelation at lag k:\n")
        maxval <- lapply(conv, function(a) a[which.max(abs(a[,"lag-k"])), 1:2])
        cat("Beta: [", paste(maxval$beta, collapse = ",") ,"], ",
            if(isL2) paste0("Beta2: [", paste(maxval$beta2, collapse = ",") ,"], "),
            if(isML) paste0("Psi: [", paste(maxval$psi, collapse = ",") ,"], "),
            "Sigma: [", paste(maxval$sigma, collapse = ",") ,"]\n", sep = "")

      }
    }
  }

  # missing data rates
  mdrout <- t(as.matrix(mdr))
  rownames(mdrout) <- "MD%"
  cat("\nMissing data per variable:\n")
  print.table(mdrout)

  cat("\n")

  invisible(NULL)

}

Try the mitml package in your browser

Any scripts or data that you put into this service are public.

mitml documentation built on Jan. 6, 2023, 5:17 p.m.