Description Usage Arguments Details Author(s) References See Also Examples
This function generates color-coded Clustered Image Maps (CIMs) ("heat maps") to represent "high-dimensional" data sets analysed with DIABLO.
1 2 3 4 5 6 7 8 9 10 11 |
object |
An object of class inheriting from |
color |
a character vector of colors such as that generated by |
color.Y |
a character vector of colors to be used for the levels of the outcome |
color.blocks |
a character vector of colors to be used for the blocks |
comp |
positive integer. The similarity matrix is computed based on the variables selected on those specified components. See example. Defaults to |
margins |
numeric vector of length two containing the margins (see |
legend.position |
position of the legend, one of "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". |
transpose |
logical indicating if the matrix should be transposed for plotting.
Defaults to |
row.names, col.names |
logical, should the name of rows and/or columns of |
size.legend |
size of the legend |
This function is a small wrapper of link{cim}
specific to the DIABLO framework.
Amrit Singh, Florian Rohart
Singh A., Gautier B., Shannon C., Vacher M., Rohart F., Tebbutt S. and Lê Cao K.A. (2016). DIABLO: multi omics integration for biomarker discovery. BioRxiv available here: http://biorxiv.org/content/early/2016/08/03/067611
Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceeding of the National Academy of Sciences of the USA 95, 14863-14868.
Weinstein, J. N., Myers, T. G., O'Connor, P. M., Friend, S. H., Fornace Jr., A. J., Kohn, K. W., Fojo, T., Bates, S. E., Rubinstein, L. V., Anderson, N. L., Buolamwini, J. K., van Osdol, W. W., Monks, A. P., Scudiero, D. A., Sausville, E. A., Zaharevitz, D. W., Bunow, B., Viswanadhan, V. N., Johnson, G. S., Wittes, R. E. and Paull, K. D. (1997). An information-intensive approach to the molecular pharmacology of cancer. Science 275, 343-349.
González I., Lê Cao K.A., Davis M.J., Déjean S. (2012). Visualising associations between paired 'omics' data sets. BioData Mining; 5(1).
mixOmics article:
Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for 'omics feature selection and multiple data integration. PLoS Comput Biol 13(11): e1005752
cim
, heatmap
,
hclust
, plotVar
,
network
and
http://mixomics.org/mixDIABLO/ for more details on all options available.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## default method: shows cross correlation between 2 data sets
#------------------------------------------------------------------
data(nutrimouse)
Y = nutrimouse$diet
data = list(gene = nutrimouse$gene, lipid = nutrimouse$lipid)
design = matrix(c(0,1,1,1,0,1,1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
nutrimouse.sgccda <- block.splsda(X = data,
Y = Y,
design = design,
keepX = list(gene = c(10,10), lipid = c(15,15)),
ncomp = 2,
scheme = "centroid")
cimDiablo(nutrimouse.sgccda)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.