Nothing
##
## This file contains MODIFIED COPIES of the lm, summary.lm, confint.lm and anova.lm methods from the base package stats (2014-10-31),
## and Anova.lm from the package car (2014-10-10).
##
# The lm function replaces stats::lm, organizes fixed and random effects, removes r() from formula and parses to lm or lmer.
anova.lmm <- function(object, ...){
if(!is.null(object$random)){
return(AnovaMix(object, 1))
} else {
class(object) <- 'lm'
return(anova(object,...))
}
}
Anova.lmm <- function(mod, ...){
mf <- match.call()
if(!is.null(mod$random)){
if(mf$type=="I" || mf$type=="1"){
return(AnovaMix(mod, 1))
} else {
if(mf$type=="II" || mf$type=="2"){
return(AnovaMix(mod, 2))
} else {
return(AnovaMix(mod, 3))
}
}
} else {
class(mod) <- 'lm'
return(Anova(mod, ...))
}
}
## FIXME: Her antas modellen ? kun inneholde faktorer, ingen andre effekter. Kan gi rare resultater!
# Mixed model ANOVA
AnovaMix <- function(object, SStype){
formula <- formula(object)
formula.text <- as.character(formula)
all.effects <- object$random$all # All model effects and interactions
fixed.effects <- object$random$fixed # All fixed effects
random.effects <- object$random$random # All random effects
main.rands.only.inter <- object$random$main.rands.only.inter # Random effects only present in interactions
restrictedModel <- !object$random$unrestricted
data <- object$model
n.effects <- length(all.effects)
main.effects <- fparse(formula) # All main effects (even though only included in interactions)
n.levels <- numeric(length(main.effects))
for(i in 1:length(main.effects)){
n.levels[i] <- length(levels(data[,main.effects[i]])) # Number of levels per main effect
}
names(n.levels) <- main.effects
N <- dim(data)[1]
ind.randoms <- numeric()
ind.randoms <- match(random.effects,all.effects) # Placement of random effects in "all.effects"
ind.fixed <- match(fixed.effects,all.effects) # Placement of fixed effects in "all.effects"
ind.fixed <- setdiff(1:n.effects,ind.randoms)
n.randoms <- length(ind.randoms)
# Estimate fixed effect Anova
# opt <- options("contrasts")
# options(contrasts=c('contr.sum','contr.poly'))
noRandom <- update(object)
noRandom$random <- NULL
class(noRandom) <- "lm"
if(SStype == 1)
fixed.model <- as.data.frame(stats::anova(noRandom))
if(SStype == 2)
fixed.model <- as.data.frame(car::Anova(noRandom, type='II', singular.ok=TRUE))
if(SStype == 3)
fixed.model <- as.data.frame(car::Anova(noRandom, type='III', singular.ok=TRUE))
# options(contrasts=opt$contrasts)
# fixed.model <- fixed.model[-1,] # Remove intercept
fixed.model <- fixed.model[c(all.effects,"Residuals"),] # Sort according to all.effects
if(!any("Mean Sq"%in%colnames(fixed.model))){
fixed.model <- cbind(fixed.model[,"Sum Sq"]/fixed.model[,"Df"], fixed.model)
colnames(fixed.model)[1] <- "Mean Sq"
}
# Check which effects should use interactions as denominators instead of error
approved.interactions <- list()
approved.interactions.fixed <- list()
for(i in 1:n.effects){
this.effect <- strsplit(all.effects[i],":")[[1]]
which.contains <- numeric()
for(j in 1:n.effects){ # Find all other effects containing this.effect
effect.names <- is.element(strsplit(all.effects[j],":")[[1]],this.effect)
# Check if current effect is contained in another effect of higher interaction level
if(i!=j && sum(effect.names)==length(this.effect) && length(effect.names)>length(this.effect)){
which.contains <- union(which.contains,j)}
}
which.contains <- sort(which.contains)
if(length(which.contains)>0){
approved.interaction <- numeric(length(which.contains))
approved.interaction.fixed <- numeric(length(which.contains))
for(j in 1:length(which.contains)){
if(restrictedModel){
# Check if any of the other main effect contained in the higher order interaction is random
approved.interaction[j] <- prod(is.element(setdiff(strsplit(all.effects[which.contains],":")[[j]],strsplit(all.effects[i],":")[[1]]),c(random.effects,main.rands.only.inter)))}
else{
if(any(is.element(ind.fixed,i))){
# Check if any of the other main effects contained in the higher order interaction is fixed
approved.interaction.fixed[j] <- prod(is.element(setdiff(strsplit(all.effects[which.contains],":")[[j]],strsplit(all.effects[i],":")[[1]]),fixed.effects))}
# Check if all of the main effects contained in the higher order interaction are random
approved.interaction[j] <- 1-prod(!is.element(strsplit(all.effects[which.contains],":")[[j]],c(random.effects,main.rands.only.inter)))}
}
if(length(which(approved.interaction==1))>0){
approved.interactions[[i]] <- which.contains[which(approved.interaction==1)]}
else{
approved.interactions[[i]] <- FALSE}
if(length(which(approved.interaction.fixed==1))>0){
approved.interactions.fixed[[i]] <- which.contains[which(approved.interaction.fixed==1)]}
else{
approved.interactions.fixed[[i]] <- FALSE}
}
else{
approved.interactions[[i]] <- FALSE
approved.interactions.fixed[[i]] <- FALSE}
}
# Find variance components (except MSerror),
# and find linear combinations needed to produce denominators of F-statistics
mix.model.attr <- list()
denom.df <- numeric(n.effects+1)
exp.mean.sq <- rep(paste("(",n.effects+1,")", sep=""), n.effects+1)
var.comps <- numeric(n.effects+1)*NA
var.comps[n.effects+1] <- fixed.model[n.effects+1,"Mean Sq"]
errors <- numeric(n.effects)
for(i in 1:n.effects) {
if(!is.logical(approved.interactions[[i]])){
# Set up matrix A and vector b to find linear combinations of effects to use as denominators in F statistics
## This is probably where unbalancedness should be included !!!!!!!!
lap <- length(approved.interactions[[i]])
A <- matrix(0,lap+1,n.effects+1)
b <- rep(1,lap+1)
for(j in 1:lap){
A[j,approved.interactions[[approved.interactions[[i]][j]]]] <- 1
A[j,approved.interactions[[i]][j]] <- 1
k <- length(approved.interactions[[i]])+1-j
exp.mean.sq[i] <- paste(exp.mean.sq[i], " + ", N/prod(n.levels[strsplit(all.effects[approved.interactions[[i]][k]],":")[[1]]]), " (",which(all.effects==all.effects[approved.interactions[[i]][k]]),")", sep="")
}
A[, n.effects+1] <- 1
A <- A[,apply(A,2,sum)>0]
denominator <- solve(t(A),b)
denominator.id <- c(approved.interactions[[i]],n.effects+1)
denominator.id <- denominator.id[denominator!=0]
mix.model.attr[[i]] <- denominator <- denominator[denominator!=0]
names(mix.model.attr[[i]]) <- denominator.id
if(length(denominator)==1){ # Original df
denom.df[i] <- fixed.model[denominator.id,"Df"]}
else{ # Satterthwaite's df correction
denom.df[i] <- sum(fixed.model[denominator.id,"Mean Sq"]*denominator)^2/sum((fixed.model[denominator.id,"Mean Sq"]*denominator)^2/fixed.model[denominator.id,"Df"])}
} else{
denominator.id <- n.effects+1
mix.model.attr[[i]] <- 1
names(mix.model.attr[[i]]) <- denominator.id
denom.df[i] <- fixed.model[denominator.id,"Df"]
denominator <- 1
}
if(sum(ind.randoms==i)>0){
exp.mean.sq[i] <- paste(exp.mean.sq[i], " + ", N/prod(n.levels[strsplit(all.effects[i],":")[[1]]]), " (",i,")", sep="")
var.comps[i] <- (fixed.model[i,"Mean Sq"]-fixed.model[denominator.id,"Mean Sq"]%*%denominator)/(N/prod(n.levels[strsplit(all.effects[i],":")[[1]]]))}
else{
if(!is.logical(approved.interactions.fixed[[i]])){
ex.ind <- paste(",", paste(approved.interactions.fixed[[i]], sep="", collapse=","),sep="")}
else{
ex.ind <- ""}
exp.mean.sq[i] <- paste(exp.mean.sq[i], " + ", N/prod(n.levels[strsplit(all.effects[i],":")[[1]]]), " Q[",i,ex.ind,"]", sep="")
}
errors[i] <- fixed.model[denominator.id,"Mean Sq"]%*%denominator
fixed.model[i,"F value"] <- fixed.model[i,"Mean Sq"]/(fixed.model[denominator.id,"Mean Sq"]%*%denominator)
if(is.na(fixed.model[i,"F value"]) || fixed.model[i,"F value"]<0){
fixed.model[i,"F value"] <- NA
}
fixed.model[i,"Pr(>F)"] <- 1-pf(fixed.model[i,"F value"],fixed.model[i,"Df"],denom.df[i])
}
names(denom.df) <- rownames(fixed.model)
object <- list(lm=object, anova=fixed.model, err.terms=c(mix.model.attr,NA), denom.df=denom.df, restricted=restrictedModel,
exp.mean.sq=exp.mean.sq, var.comps=var.comps, random.effects=random.effects, ind.randoms=ind.randoms, formula.text=formula.text, errors=errors)
class(object) <- "AnovaMix"
object
}
## Print method for object from AnovaMix
print.AnovaMix <- function(x,...){
object <- x
N <- length(object$err.terms)
output1 <- object$anova
Fs <- PrF <- character(N)
PrF[!is.na(output1$"Pr(>F)")] <- format(round(output1$"Pr(>F)"[!is.na(output1$"Pr(>F)")],4), digits=1, scientific=FALSE, nsmall=4)
PrF[is.na(output1$"Pr(>F)")] <- "-"
output1$"Pr(>F)" <- PrF
Fs[!is.na(output1$"F value")] <- format(output1$"F value"[!is.na(output1$"F value")], digits=1, scientific=FALSE, nsmall=2)
Fs[is.na(output1$"F value")] <- "-"
output1$"F value" <- Fs
output1$"Sum Sq" <- format(output1$"Sum Sq", digits=1, scientific=FALSE, nsmall=2)
output1$"Mean Sq" <- format(output1$"Mean Sq", digits=1, scientific=FALSE, nsmall=2)
err.terms <- character(length(object$err.terms))
for(i in 1:N){
if(length(object$err.terms[[i]])==1 && is.na(object$err.terms[[i]])){
err.terms[i] <- "-"
}
else{
err.terms[i] <- paste(ifelse(object$err.terms[[i]][1]>1,paste(object$err.terms[[i]][1],"*",sep=""),""),"(",names(object$err.terms[[i]][1]),")",sep="")
if(length(object$err.terms[[i]])>1){
for(j in 2:length(object$err.terms[[i]])){
if(object$err.terms[[i]][j]<0){
err.terms[i] <- paste(err.terms[i], paste(ifelse(object$err.terms[[i]][j]<(-1),paste(abs(object$err.terms[[i]][j]),"*",sep=""),""), "(", names(object$err.terms[[i]][j]), ")", sep=""), sep=" - ")
} else {
err.terms[i] <- paste(err.terms[i], paste(ifelse(object$err.terms[[i]][j]>1,paste(object$err.terms[[i]][j],"*",sep=""),""), "(", names(object$err.terms[[i]][j]), ")", sep=""), sep=" + ")}
}
}
}
}
var.comps <- format(object$var.comps, digits=3)
var.comps[setdiff(1:(N-1), object$ind.randoms)] <- "fixed"
denom.df <- character(N)
denom.df[!is.na(object$denom.df)&round(object$denom.df)==object$denom.df] <- format(object$denom.df[!is.na(object$denom.df)&round(object$denom.df)==object$denom.df], digits=3)
denom.df[!is.na(object$denom.df)&round(object$denom.df)!=object$denom.df] <- format(object$denom.df[!is.na(object$denom.df)&round(object$denom.df)!=object$denom.df], digits=3)
denom.df[object$denom.df==0] <- "-"
output2 <- data.frame("Err.terms"=err.terms, "Denom.df"=denom.df, "VC(SS)"=var.comps)
colnames(output2) <- c("Err.term(s)", "Err.df", "VC(SS)")
output3 <- data.frame("E(MS)"=format(object$exp.mean.sq))
colnames(output3) <- "Expected mean squares"
rownames(output2) <- paste(1:N," ",rownames(object$anova), sep="")
rownames(output3) <- rownames(object$anova)
if(!object$restricted){
un <- "un"}
else{
un <- ""}
cat("Analysis of variance (", un, "restricted model)\n", sep="")
cat("Response: ", object$formula.text[2], "\n", sep="")
print(format(output1, digits=3))
cat("\n")
print(output2)
cat("(VC = variance component)\n\n")
print(output3)
# if(!is.balanced(object$lm)){
# cat("\nWARNING: Unbalanced data may lead to poor estimates\n")
# }
}
# lm from stats, edited to use treatment names in sum contrasts
# and enable limited classical least squares mixed models
if(requireNamespace("lme4", quietly = TRUE)){
lmer <- lme4::lmer
} else {
lmer <- function()warning("Install package lme4 to enable REML/ML modelling.")
}
lm <- function (formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE,
qr = TRUE, singular.ok = TRUE, contrasts = "contr.sum",
offset, unrestricted = TRUE, REML = NULL, ...)
{
ret.x <- x
ret.y <- y
cl <- match.call()
mf <- match.call(expand.dots = FALSE)
## Edited by KHL
mfd <- match(c("formula","data"), names(mf), 0L)
if(length(mfd)==2){ # Has formula and data
is.random <- TRUE
if( any(grepl("r(",formula,fixed=TRUE)) ){
rw <- random.worker(formula, data, REML)
} else {
rw <- list(0)
}
if(length(rw) == 1){
is.random <- FALSE
} else { # Removed r() from formula
formula <- rw$formula
mf$formula <- rw$formula
rw$unrestricted <- unrestricted
if(is.logical(REML)){ # Perform
if(requireNamespace("lme4", quietly = TRUE)){
cl[[1]] <- as.name("lmer")
cl[["formula"]] <- rw$reml.formula
object <- eval(cl,parent.frame())
object@call <- cl
return(object)
} else {
warning('Package lme4 required for random REML/ML models.')
}
}
}
} else {
is.random <- FALSE
}
## End of edit
m <- match(c("formula", "data", "subset", "weights", "na.action", "offset"),
names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- TRUE
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
if (method == "model.frame")
return(mf)
else if (method != "qr")
warning(gettextf("method = '%s' is not supported. Using 'qr'", method),
domain = NA)
mt <- attr(mf, "terms") # allow model.frame to update it
y <- model.response(mf, "numeric")
# Create contrast list if single character argument is supplied to contrasts
contrasts.orig <- contrasts
if(!is.null(contrasts)){
if(is.character(contrasts)){
facs <- which(unlist(lapply(mf, inherits, what = "factor")))
if(contrasts == "contr.weighted")
contrasts <- lapply(mf[facs], "contr.weighted")
else {
contrasts <- as.list(rep(contrasts, length(facs)))
names(contrasts) <- names(facs)
}
}
}
## avoid any problems with 1D or nx1 arrays by as.vector.
w <- as.vector(model.weights(mf))
if(!is.null(w) && !is.numeric(w))
stop("'weights' must be a numeric vector")
offset <- as.vector(model.offset(mf))
if(!is.null(offset)) {
if(length(offset) != NROW(y))
stop(gettextf("number of offsets is %d, should equal %d (number of observations)",
length(offset), NROW(y)), domain = NA)
}
if (is.empty.model(mt)) {
x <- NULL
z <- list(coefficients = if (is.matrix(y))
matrix(,0,3) else numeric(), residuals = y,
fitted.values = 0 * y, weights = w, rank = 0L,
df.residual = if(!is.null(w)) sum(w != 0) else
if (is.matrix(y)) nrow(y) else length(y))
if(!is.null(offset)) {
z$fitted.values <- offset
z$residuals <- y - offset
}
}
else {
x <- model.matrix(mt, mf, contrasts)
## Edited by KHL
if((is.null(contrasts.orig) && options("contrasts")[[1]][1] %in% c("contr.sum", "contr.weighted")) ||
(is.list(contrasts.orig) && all(unlist(contrasts.orig) %in% c("contr.sum", "contr.weighted"))) ||
(is.character(contrasts.orig) && contrasts.orig %in% c("contr.sum", "contr.weighted"))){
# if((is.list(contrasts) || is.null(contrasts)) && (options("contrasts")[[1]][1] %in% c("contr.sum", "contr.weighted")) && !missing(data)){ # || options("contrasts")[[1]][1]!="contr.poly"
col.names <- effect.labels(mt,mf) # mt er "terms" fra formula, x er model.matrix
if(length(col.names)==length(colnames(x))){
colnames(x) <- effect.labels(mt,mf)
effect.sources <- effect.source(mt,mf)
}
}
## End edit
z <- if(is.null(w)) lm.fit(x, y, offset = offset,
singular.ok=singular.ok, ...)
else lm.wfit(x, y, w, offset = offset, singular.ok=singular.ok, ...)
}
if(is.matrix(y)){
class(z) <- c( "mlm","lm")
} else {
class(z) <- c( "lmm", "lm")
}
z$na.action <- attr(mf, "na.action")
z$offset <- offset
z$contrasts <- attr(x, "contrasts")
z$xlevels <- .getXlevels(mt, mf)
z$call <- cl
z$terms <- mt
if (model)
z$model <- mf
if (ret.x)
z$x <- x
if (ret.y)
z$y <- y
if (!qr) z$qr <- NULL
## Edited by KHL
if( is.random ){
z$random <- rw
if(!all(grepl("factor",attr(mt,"dataClasses")[-1])|grepl("ordered",attr(mt,"dataClasses")[-1]))){
stop("Mixed models containing continuous effects not supported")
}
}
if(exists("effect.sources") && !is.null(effect.sources))
z$effect.sources <- effect.sources
## End edit
z
}
## Collect and extract randomness
random.worker <- function(formula, data, REML = NULL){
formula <- formula(formula)
terms <- terms(formula)
effsr <- attr(terms,"term.labels")
effs <- attr(terms(rparse(formula)),"term.labels")
if(length(effs)==0){
return( list(0) )
}
has.intercept <- attr(terms,"intercept")==1
rands <- sort(unique(c(grep("[:]r[(]",effsr), # Match random in interaction
grep("^r[(]", effsr), # Match random in the beginning
grep("[(]r[(]",effsr)))) # Match random inside function
# which.rands <- match(rands,effsr)
eff.splits <- list()
for(i in 1:length(effs)){ # Split effect to look for hidden random interactions
eff.splits[[i]] <- fparse(formula(paste("1~", effs[i],sep="")))
}
eff.lengths <- lapply(eff.splits,length)
main.effs <- effs[eff.lengths==1]
main.rands <- main.effs[main.effs%in%effs[rands]]
main.rands.only.inter <- character(0)
for(i in rands){
main.rands.only.inter <- c(main.rands.only.inter, setdiff(eff.splits[[i]],main.effs)) # Random main effects only present in interactions
}
inter.rands <- which(unlist(lapply(eff.splits,function(i) any(main.rands%in%i))))
# Check if any interactions containing random effects are not labeled as random
if(any(is.na(match(inter.rands,rands)))){
extra.randoms <- inter.rands[which(is.na(match(inter.rands,rands)))]
warning(paste(paste(effs[extra.randoms],sep="",collapse=", "), " included as random interaction",ifelse(length(extra.randoms)==1,"","s"),sep=""))
rands <- cbind(rands,extra.randoms)
effs <- effs[!(extra.randoms%in%effs)]
}
if(length(rands)==0){
return( list(0) )
} else {
if(is.logical(REML)){
remleffs <- c(effs[setdiff(1:length(effs),rands)],paste("(1|",effs[rands],")",sep=""))
reml.formula <- formula(paste(formula[[2]],"~",paste(remleffs,collapse="+"),ifelse(has.intercept,"","-1"),sep=""))
return( list(rformula = formula, formula = formula(paste(formula[[2]],"~",paste(effs,collapse="+"),ifelse(has.intercept,"","-1"),sep="")), random = effs[rands], main.rands.only.inter = main.rands.only.inter, fixed = effs[setdiff(1:length(effsr),rands)], all = effs, allr = effsr, has.intercept = has.intercept, remleffs = remleffs, reml.formula = reml.formula))
} else {
return( list(rformula = formula, formula = formula(paste(formula[[2]],"~",paste(effs,collapse="+"),ifelse(has.intercept,"","-1"),sep="")), random = effs[rands], main.rands.only.inter = main.rands.only.inter, fixed = effs[setdiff(1:length(effsr),rands)], all = effs, allr = effsr, has.intercept = has.intercept))
}
}
}
###########################################
# summary.lm from stats, edited to enable limited classical least squares mixed models
summary.lmm <- function (object, correlation = FALSE, symbolic.cor = FALSE, ...) {
z <- object
p <- z$rank
rdf <- z$df.residual
if (p == 0) {
r <- z$residuals
n <- length(r)
w <- z$weights
if (is.null(w)) {
rss <- sum(r^2)
}
else {
rss <- sum(w * r^2)
r <- sqrt(w) * r
}
resvar <- rss/rdf
ans <- z[c("call", "terms", if (!is.null(z$weights)) "weights")]
class(ans) <- "summary.lm"
ans$aliased <- is.na(coef(object))
ans$residuals <- r
ans$df <- c(0L, n, length(ans$aliased))
ans$coefficients <- matrix(NA, 0L, 4L)
dimnames(ans$coefficients) <- list(NULL, c("Estimate",
"Std. Error", "t value", "Pr(>|t|)"))
ans$sigma <- sqrt(resvar)
ans$r.squared <- ans$adj.r.squared <- 0
return(ans)
}
if (is.null(z$terms))
stop("invalid 'lm' object: no 'terms' component")
if (!inherits(object, "lm"))
warning("calling summary.lm(<fake-lm-object>) ...")
Qr <- qr.lmm(object)
n <- NROW(Qr$qr)
if (is.na(z$df.residual) || n - p != z$df.residual)
warning("residual degrees of freedom in object suggest this is not an \"lm\" fit")
r <- z$residuals
f <- z$fitted.values
w <- z$weights
if (is.null(w)) {
mss <- if (attr(z$terms, "intercept"))
sum((f - mean(f))^2)
else sum(f^2)
rss <- sum(r^2)
}
else {
mss <- if (attr(z$terms, "intercept")) {
m <- sum(w * f/sum(w))
sum(w * (f - m)^2)
}
else sum(w * f^2)
rss <- sum(w * r^2)
r <- sqrt(w) * r
}
p1 <- 1L:p # Moved up for the sake of "random"
if(is.null(object$random)){
resvar <- rss/rdf
} else {
An <- Anova(object,type=3)
effect.names <- rownames(An$anova)
if(is.null(object$effect.sources))
stop("Effect sources not found")
errors <- An$errors
err.df <- An$denom.df
inds <- match(object$effect.sources[-1],effect.names)
# resvar <- c(rss/rdf,errors[inds]/err.df[inds])
resvar <- c(rss/rdf,errors[inds])[Qr$pivot[p1]]
}
if (any(is.finite(resvar) & resvar < (mean(f)^2 + var(f)) *
1e-30))
warning("essentially perfect fit: summary may be unreliable")
R <- chol2inv(Qr$qr[p1, p1, drop = FALSE])
se <- sqrt(diag(R) * resvar)
est <- z$coefficients[Qr$pivot[p1]]
tval <- est/se
ans <- z[c("call", "terms", if (!is.null(z$weights)) "weights")]
ans$residuals <- r
ans$coefficients <- cbind(est, se, tval, 2 * pt(abs(tval),
rdf, lower.tail = FALSE))
dimnames(ans$coefficients) <- list(names(z$coefficients)[Qr$pivot[p1]],
c("Estimate", "Std. Error", "t value", "Pr(>|t|)"))
ans$aliased <- is.na(coef(object))
ans$sigma <- sqrt(resvar[1])
ans$df <- c(p, rdf, NCOL(Qr$qr))
if (p != attr(z$terms, "intercept")) {
df.int <- if (attr(z$terms, "intercept"))
1L
else 0L
ans$r.squared <- mss/(mss + rss)
ans$adj.r.squared <- 1 - (1 - ans$r.squared) * ((n -
df.int)/rdf[1])
ans$fstatistic <- c(value = (mss/(p - df.int))/resvar[1],
numdf = p - df.int, dendf = rdf[1])
}
else ans$r.squared <- ans$adj.r.squared <- 0
ans$cov.unscaled <- R
dimnames(ans$cov.unscaled) <- dimnames(ans$coefficients)[c(1,
1)]
if (correlation) {
ans$correlation <- (R * resvar)/outer(se, se)
dimnames(ans$correlation) <- dimnames(ans$cov.unscaled)
ans$symbolic.cor <- symbolic.cor
}
if (!is.null(z$na.action))
ans$na.action <- z$na.action
if(!is.null(object$random) && !is.balanced(object)){
cat("\nWARNING: Unbalanced data may lead to poor estimates\n")
}
class(ans) <- "summary.lmm"
ans
}
###########################################
# confint.lm from stats, edited to enable limited classical least squares mixed models
confint.lmm <- function (object, parm, level = 0.95, ...)
{
cf <- coef(object)
pnames <- names(cf)
if (missing(parm))
parm <- pnames
else if (is.numeric(parm))
parm <- pnames[parm]
a <- (1 - level)/2
a <- c(a, 1 - a)
fac <- qt(a, object$df.residual)
pct <- format.perc(a, 3)
ci <- array(NA, dim = c(length(parm), 2L), dimnames = list(parm,
pct))
if(is.null(object$random)){
ses <- sqrt(diag(vcov(object)))[parm]
} else {
p <- object$rank
p1 <- 1L:p # Moved up for the sake of "random"
Qr <- qr.lmm(object)
rdf <- object$df.residual
r <- object$residuals
w <- object$weights
if (is.null(w)) {
rss <- sum(r^2)
} else {
rss <- sum(w * r^2)
}
An <- Anova(object,type=3)
effect.names <- rownames(An$anova)
if(is.null(object$effect.sources))
stop("Effect sources not found")
errors <- An$errors
err.df <- An$denom.df
inds <- match(object$effect.sources[-1],effect.names)
resvar <- c(rss/rdf,errors[inds])[Qr$pivot[p1]]
R <- chol2inv(Qr$qr[p1, p1, drop = FALSE])
ses <- sqrt(diag(R) * resvar)[match(parm,colnames(vcov(object)))]
}
ci[] <- cf[parm] + ses %o% fac
ci
}
format.perc <- function (x, digits, ...)
paste(format(100 * x, trim = TRUE, scientific = FALSE, digits = digits, ...),
"%")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.