Nothing
# NESTED REFIT ----
#' Refits a Nested Modeltime Table
#'
#' @description
#' Refits a Nested Modeltime Table to actual data using the following process:
#'
#' 1. Models are iteratively refit to .actual_data.
#' 2. Any model that returns an error is logged.
#' Errors can be retrieved with [extract_nested_error_report()]
#' 3. Forecast is predicted on future_data and is logged.
#' Forecast can be retrieved with [extract_nested_future_forecast()]
#'
#' @param object A Nested Modeltime Table
#' @param control Used to control verbosity and parallel processing. See [control_nested_refit()].
#'
#' @export
modeltime_nested_refit <- function(object, control = control_nested_refit()) {
UseMethod("modeltime_nested_refit", object)
}
#' @export
modeltime_nested_refit.nested_mdl_time <- function(object, control = control_nested_refit()) {
# Parallel or Sequential
if ((control$cores > 1) && control$allow_par) {
ret <- modeltime_nested_refit_parallel(
object = object,
control = control
)
} else {
ret <- modeltime_nested_refit_sequential(
object = object,
control = control
)
}
}
# *** PARALLEL *** ----
modeltime_nested_refit_parallel <- function(object, control) {
t1 <- Sys.time()
# Parallel Detection
is_par_setup <- foreach::getDoParWorkers() > 1
# If parallel processing is not set up, set up parallel backend
par_setup_info <- setup_parallel_processing(control, is_par_setup, t1)
clusters_made <- par_setup_info$clusters_made
cl <- par_setup_info$cl
# Setup Foreach
`%op%` <- get_operator(allow_par = control$allow_par)
# HANDLE INPUTS ----
id_text <- attr(object, "id")
object <- object %>%
dplyr::select(dplyr::one_of(id_text), ".actual_data", ".future_data", ".splits", ".modeltime_tables")
conf_interval <- attr(object, "conf_interval")
conf_method <- attr(object, "conf_method")
if (is.null(conf_method)) {conf_method <- "conformal_default"}
# SETUP ITERABLES ----
model_list = object$.modeltime_tables
actual_list = object$.actual_data
future_list = object$.future_data
id_vec = object[[id_text]]
# BEGIN LOOP -----
safe_fit <- purrr::safely(mdl_time_refit, otherwise = NULL, quiet = TRUE)
if (control$verbose) {
t <- Sys.time()
message(stringr::str_glue(" Beginning Parallel Loop | {round(t-t1, 3)} seconds"))
}
ret <- foreach::foreach(
x = model_list,
d = actual_list,
f = future_list,
id = id_vec,
.inorder = TRUE,
.packages = control$packages,
.verbose = FALSE
) %op% {
..model_id <- x$.model_id
..model_list <- x$.model
# Safe fitting for each workflow in model_list ----
.l <- purrr::map2(..model_list, ..model_id, .f = function (mod, mod_id) {
suppressMessages({
suppressWarnings({
fit_list <- safe_fit(mod, data = d)
})
})
res <- fit_list %>% purrr::pluck("result")
err <- fit_list %>% purrr::pluck("error", 1)
error_tbl <- tibble::tibble(
!! id_text := id,
.model_id = mod_id,
.model_desc = get_model_description(mod),
.error_desc = ifelse(is.null(err), NA_character_, err)
)
return(list(
res = res,
err = error_tbl
))
})
# * Extract models and errors ----
model_list_trained <- sapply(.l, function(l) l[1])
error_list <- sapply(.l, function(l) l[2]) %>% dplyr::bind_rows()
# Convert to Modeltime Table -----
ret <- tibble::tibble(
.model = model_list_trained
) %>%
dplyr::mutate(.model_id = ..model_id) %>%
dplyr::mutate(.model_desc = purrr::map_chr(.model, .f = get_model_description)) %>%
# Simplify Naming
dplyr::mutate(.model_desc = gsub("[[:punct:][:digit:][:cntrl:]]", "", .model_desc)) %>%
dplyr::mutate(.model_desc = gsub(" WITH.*$", "", .model_desc))
# Add calibration
tryCatch({
ret <- ret %>%
dplyr::bind_cols(x[c(".type", ".calibration_data")])
}, error = function(e) {
# If calibration does not exist, do nothing
})
# Update class
class(ret) <- c("mdl_time_tbl", class(ret))
# Future Forecast ----
fcast_tbl <- NULL
suppressMessages({
suppressWarnings({
tryCatch({
fcast_tbl <- modeltime_forecast(
object = ret,
new_data = f,
actual_data = d,
conf_interval = conf_interval,
conf_method = conf_method
) %>%
tibble::add_column(!! id_text := id, .before = 1)
}, error=function(e){
# Return nothing
})
})
})
# return(list(model_list_trained = model_list_trained, error_list = error_list))
return(list(
mdl_time_tbl = ret,
error_list = error_list,
fcast_tbl = fcast_tbl
))
} # END LOOP | returns ret
# CONSOLIDATE RESULTS
mdl_time_list <- ret %>% purrr::map(purrr::pluck("mdl_time_tbl"))
error_list <- ret %>% purrr::map(purrr::pluck("error_list"))
fcast_list <- ret %>% purrr::map(purrr::pluck("fcast_tbl"))
# FORMAT RESULTS ----
nested_modeltime <- object %>%
dplyr::mutate(.modeltime_tables = mdl_time_list)
error_tbl <- error_list %>% dplyr::bind_rows()
if (nrow(error_tbl) > 0) {
error_tbl <- error_tbl %>%
tidyr::drop_na(.error_desc)
}
fcast_tbl <- fcast_list %>% dplyr::bind_rows()
# Finish Parallel Backend ----
# Close clusters if we set up internally.
finish_parallel_processing(control, clusters_made, cl, t1)
# FINISH TIMING ----
t2 <- Sys.time()
time_elapsed <- difftime(t2, t1, units = "auto") %>%
utils::capture.output() %>%
stringr::str_remove("Time difference of ")
if (control$verbose) cli::cli_inform(stringr::str_glue("Finished in: {time_elapsed}."))
# STRUCTURE ----
attr(nested_modeltime, "error_tbl") <- error_tbl
attr(nested_modeltime, "future_forecast_tbl") <- fcast_tbl
attr(nested_modeltime, "fit_column") <- ".actual_data"
attr(nested_modeltime, "time_elapsed") <- time_elapsed
if (nrow(attr(nested_modeltime, "error_tbl")) > 0) {
rlang::warn("Some models had errors during fitting. Use `extract_nested_error_report()` to review errors.")
}
return(nested_modeltime)
return(ret)
}
# *** SEQUENTIAL *** ----
modeltime_nested_refit_sequential <- function(object, control) {
t1 <- Sys.time()
# HANDLE INPUTS ----
id_text <- attr(object, "id")
object <- object %>%
dplyr::select(dplyr::one_of(id_text), ".actual_data", ".future_data", ".splits", ".modeltime_tables")
id_expr <- rlang::sym(id_text)
n_ids <- nrow(object)
x_expr <- rlang::sym(".modeltime_tables")
d_expr <- rlang::sym(".actual_data")
f_expr <- rlang::sym(".future_data")
conf_interval <- attr(object, "conf_interval")
conf_method <- attr(object, "conf_method")
if (is.null(conf_method)) {conf_method <- "conformal_default"}
# SETUP LOGGING ENV ----
logging_env <- rlang::env(
fcast_tbl = tibble::tibble(),
error_tbl = tibble::tibble()
)
# SETUP PROGRESS
if (!control$verbose) cli::cli_progress_bar("Fitting models on actual data...", total = nrow(object), .envir = logging_env)
# LOOP LOGIC ----
nested_modeltime <- object %>%
tibble::rowid_to_column(var = '..rowid') %>%
dplyr::mutate(
.modeltime_tables = purrr::pmap(.l = list(x = !! x_expr, d = !! d_expr, f = !! f_expr, id = !! id_expr, i = ..rowid), .f = function(x, d, f, id, i) {
# Save current model descriptions
# model_desc_user_vec <- x$.model_desc
# model_desc_modeltime_old_vec <- x$.model %>% purrr::map_chr(get_model_description)
..model_id <- x$.model_id
if (control$verbose) cli::cli_alert_info(stringr::str_glue("[{i}/{n_ids}] Starting Modeltime Table: ID {id}..."))
model_list <- x$.model
safe_fit <- purrr::safely(mdl_time_refit, otherwise = NULL, quiet = TRUE)
# Safe fitting for each workflow in model_list ----
.l <- purrr::map2(model_list, ..model_id, .f = function (mod, mod_id) {
suppressMessages({
suppressWarnings({
fit_list <- safe_fit(mod, data = d)
})
})
res <- fit_list %>% purrr::pluck("result")
err <- fit_list %>% purrr::pluck("error", 1)
error_tbl <- tibble::tibble(
!! id_text := id,
.model_id = mod_id,
.model_desc = get_model_description(mod),
.error_desc = ifelse(is.null(err), NA_character_, err)
)
if (control$verbose) {
if (!is.null(err)) {
cli::cli_alert_danger("Model {mod_id} Failed {error_tbl$.model_desc}: {err}")
} else {
cli::cli_alert_success("Model {mod_id} Passed {error_tbl$.model_desc}.")
}
}
logging_env$error_tbl <- dplyr::bind_rows(logging_env$error_tbl, error_tbl)
return(res)
})
# Convert to Modeltime Table -----
ret <- tibble::tibble(
.model = .l
) %>%
dplyr::mutate(.model_id = ..model_id) %>%
dplyr::mutate(.model_desc = purrr::map_chr(.model, .f = get_model_description)) %>%
# Simplify Naming
dplyr::mutate(.model_desc = gsub("[[:punct:][:digit:][:cntrl:]]", "", .model_desc)) %>%
dplyr::mutate(.model_desc = gsub(" WITH.*$", "", .model_desc))
# Add calibration
tryCatch({
ret <- ret %>%
dplyr::bind_cols(x[c(".type", ".calibration_data")])
}, error = function(e) {
# If calibration does not exist, do nothing
})
# Update class
class(ret) <- c("mdl_time_tbl", class(ret))
# Future Forecast ----
suppressMessages({
suppressWarnings({
tryCatch({
fcast_tbl <- modeltime_forecast(
object = ret,
new_data = f,
actual_data = d,
conf_interval = conf_interval,
conf_method = conf_method
) %>%
tibble::add_column(!! id_text := id, .before = 1)
logging_env$fcast_tbl <- dplyr::bind_rows(logging_env$fcast_tbl, fcast_tbl)
}, error=function(e){
# Return nothing
})
})
})
# Finish ----
if (control$verbose) cli::cli_alert_success(stringr::str_glue("[{i}/{n_ids}] Finished Modeltime Table: ID {id}"))
if (control$verbose) cat("\n")
if (!control$verbose) cli::cli_progress_update(.envir = logging_env)
return(ret)
})
) %>%
dplyr::select(-..rowid)
if (!control$verbose) cli::cli_progress_done(.envir = logging_env)
t2 <- Sys.time()
time_elapsed <- difftime(t2, t1, units = "auto") %>%
utils::capture.output() %>%
stringr::str_remove("Time difference of ")
if (control$verbose) cli::cli_inform(stringr::str_glue("Finished in: {time_elapsed}."))
# STRUCTURE ----
attr(nested_modeltime, "error_tbl") <- logging_env$error_tbl %>% tidyr::drop_na(.error_desc)
attr(nested_modeltime, "future_forecast_tbl") <- logging_env$fcast_tbl
attr(nested_modeltime, "fit_column") <- ".actual_data"
attr(nested_modeltime, "time_elapsed") <- time_elapsed
if (nrow(attr(nested_modeltime, "error_tbl")) > 0) {
rlang::warn("Some models had errors during fitting. Use `extract_nested_error_report()` to review errors.")
}
return(nested_modeltime)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.