Nothing
###
### R routines for the R package mvmeta (c)
#
par2Psi <-
function(par, k, bscov, control) {
#
################################################################################
#
Psi <- switch(bscov,
# IF UNSTRUCTURED, CROSSPRODUCT FROM CHOLESKY
unstr = {
L <- diag(0,k)
L[lower.tri(L,diag=TRUE)] <- par
tcrossprod(L)
},
# DIAGONAL: THE EXPONENTIAL OF THE PARAMETERS
diag = diag(exp(par),k),
# IDENTITY: THE EXPONENTIAL OF THE PARAMETER
id = diag(k)*exp(par[1]),
# COMPOUND SYMMETRY
cs = {
R <- matrix((exp(par[2])-1/(k-1))/(exp(par[2])+1),k,k)
R[row(R) == col(R)] <- 1
exp(par[1]*2) * R
},
# HETEROSCEDASTIC COMPOUND SYMMETRY
hcs = {
R <- matrix((exp(par[k+1])-1/(k-1))/(exp(par[k+1])+1),k,k)
R[row(R) == col(R)] <- 1
D <- diag(sqrt(exp(par[seq(k)]*2)),k)
D%*%R%*%D
},
# AUTOREGRESSIVE OF FIRST ORDER
ar1 = {
cor <- plogis(par[k+1])*2-1
R <- cor^abs(outer(seq(k),seq(k),"-"))
D <- diag(sqrt(exp(par[seq(k)])),k)
D%*%R%*%D
},
# PROPORTIONAL
prop = {
Psifix <- if(!is.null(fix <- control$Psifix)) {
if(is.matrix(fix)) fix else xpndMat(fix)
} else diag(k)
exp(par)*Psifix
},
# KNOWN CORRELATION
cor = inputcov(sqrt(exp(par)),control$Psicor),
# FIXED
fixed = {
Psifix <- if(!is.null(fix <- control$Psifix)) {
if(is.matrix(fix)) fix else xpndMat(fix)
} else diag(0,k)
Psifix
}
)
#
Psi
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.