Nothing
#' @title Panel regression models fit via multilevel modeling
#' @description Fit "within-between" and several other regression variants
#' for panel data in a multilevel modeling framework.
#' @param formula Model formula. See details for crucial
#' info on `panelr`'s formula syntax.
#' @param data The data, either a `panel_data` object or `data.frame`.
#' @param id If `data` is not a `panel_data` object, then the name of the
#' individual id column as a string. Otherwise, leave as NULL, the default.
#' @param wave If `data` is not a `panel_data` object, then the name of the
#' panel wave column as a string. Otherwise, leave as NULL, the default.
#' @param model One of `"w-b"`, `"within"`, `"between"`,
#' `"contextual"`. See details for more on these options.
#' @param detrend Adjust within-subject effects for trends in the predictors?
#' Default is FALSE, but some research suggests this is a better idea
#' (see Curran and Bauer (2011) reference).
#' @param use.wave Should the wave be included as a predictor? Default is
#' FALSE.
#' @param wave.factor Should the wave variable be treated as an unordered
#' factor instead of continuous? Default is FALSE.
#' @param min.waves What is the minimum number of waves an individual must
#' have participated in to be included in the analysis? Default is `2` and
#' any valid number is accepted. `"all"` is also acceptable if you want to
#' include only complete panelists.
#' @param family Use this to specify GLM link families. Default is `gaussian`,
#' the linear model.
#' @param balance.correction Correct between-subject effects for unbalanced
#' panels following the procedure in Curran and Bauer (2011)? Default is
#' FALSE.
#' @param dt.random Should the detrending procedure be performed with a
#' random slope for each entity? Default is TRUE but for short panels
#' FALSE may be better, fitting a trend for all entities.
#' @param dt.order If detrending using `detrend`, what order polynomial
#' would you like to specify for the relationship between time and the
#' predictors? Default is 1, a linear model.
#' @param pR2 Calculate a pseudo R-squared? Default is TRUE, but in some cases
#' may cause errors or add computation time.
#' @param pvals Calculate p values? Default is TRUE but for some complex
#' linear models, this may take a long time to compute using the `pbkrtest`
#' package.
#' @param t.df For linear models only. User may choose the method for
#' calculating the degrees of freedom in t-tests. Default is
#' `"Satterthwaite"`, but you may also choose `"Kenward-Roger"`.
#' Kenward-Roger standard errors/degrees of freedom requires the `pbkrtest`
#' package.
#' @param weights If using weights, either the name of the column in the data
#' that contains the weights or a vector of the weights.
#'
#' @param dt_random Deprecated. Equivalent to `dt.random`.
#' @param dt_order Deprecated. Equivalent to `dt.order`.
#' @param balance_correction Deprecated. Equivalent to `balance.correction`.
#'
#' @inheritParams lme4::glmer
#'
#' @param ... Additional arguments provided to [lme4::lmer()],
#' [lme4::glmer()], or [lme4::glmer.nb()].
#'
#' @param interaction.style The best way to calculate interactions in within
#' models is in some dispute. The conventional way (`"demean"`) is to first
#' calculate the product of the variables involved in the interaction before
#' those variables have their means subtracted and then subtract the mean of
#' the product from the product term (see Schunk and Perales (2017)).
#' Giesselmann and Schmidt-Catran (2020) show this method carries
#' between-entity differences that within models are designed to model out.
#' They suggest an alternate method (`"double-demean"`) in which the product
#' term is first calculated using the de-meaned lower-order variables and
#' then the subject means are subtracted from this product term. Another
#' option is to simply use the product term of the de-meaned variables
#' (`"raw"`), but Giesselmann and Schmidt-Catran (2020) show this method
#' biases the results towards zero effect. The default is `"double-demean"`
#' but if emulating other software is the goal, `"demean"` might be
#' preferred.
#'
#'
#' @inheritParams jtools::scale_mod
#' @inheritParams jtools::summ.merMod
#'
#' @return A `wbm` object, which inherits from `merMod`.
#' @author Jacob A. Long
#' @details
#'
#' **Formula syntax**
#'
#' The within-between models, and multilevel panel models more generally,
#' distinguish between time-varying and time-invariant predictors. These are,
#' as they sound, variables that are either measured repeatedly (in every wave)
#' in the case of time-varying predictors or only once in the case of
#' time-invariant predictors. You need to specify these separately in the
#' formula to tell the model which variables you expect to change over time and
#' which will not. The primary way of doing so is via the `|` operator.
#'
#' As an example, we can look at the [WageData] included in this
#' package. We will create a model that predicts the logarithm of the
#' individual's wages (`lwage`) with their union status (`union`), which can
#' change over time, and their race (`blk`; dichotomized as black or
#' non-black),
#' which does not change throughout the period of study. Our formula will look
#' like this:
#'
#' `lwage ~ union | blk`
#'
#' Put time-varying variables before the first `|` and time-invariant
#' variables afterwards. You can specify lags like `lag(union)` for time-varying
#' variables; for more than 1 lag, include the number: `lag(union, 2)`.
#'
#' After the first `|` go the time-invariant variables. Note that if you put a
#' time-varying variable here, what you get is the observed value rather than
#' one adjusted to isolate within-entity effects. You may also take a
#' time-varying variable --- let's say weeks worked (`wks`) --- and use
#' `imean(wks)` to include the individual's mean across all waves as a
#' predictor while omitting the per-wave measures.
#'
#' There is also a place for a second `|`. Here you can specify cross-level
#' interactions (within-level interactions can be specified here as well).
#' If I wanted the interaction term for `union` and `blk` --- to see whether
#' the effect of union status depended on one's race --- I would specify the
#' formula this way:
#'
#' `lwage ~ union | blk | union * blk`
#'
#' Another use for the post-second `|` section of the formula is for changing
#' the random effects specification. By default, only a random intercept is
#' specified in the call to [lme4::lmer()]/[lme4::glmer()]. If you would like
#' to specify other random slopes, include them here using the typical `lme4`
#' syntax:
#'
#' `lwage ~ union | blk | (union | id)`
#'
#' You can also include the wave variable in a random effects term to
#' specify a latent growth curve model:
#'
#' `lwage ~ union | blk + t | (t | id)`
#'
#' One last thing to know: If you want to use the second `|` but not the first,
#' put a 1 or 0 after the first, like this:
#'
#' `lwage ~ union | 1 | (union | id)`
#'
#' Of course, with no time-invariant variables, you need no `|` operators at
#' all.
#'
#' **Models**
#'
#' As a convenience, `wbm` does the heavy lifting for specifying the
#' within-between model correctly. As a side effect it only
#' takes a few easy tweaks to specify the model slightly differently. You
#' can change this behavior with the `model` argument.
#'
#' By default, the argument is `"w-b"` (equivalently, `"within-between"`).
#' This means, for each time-varying predictor, you have two types of
#' variables in the model. The "between" effect is represented by the
#' individual-level mean for each entity (e.g., each respondent to a panel
#' survey). The "within" effect is represented by each wave's measure *with
#' the individual-level mean* subtracted. Some refer to this as "de-meaning."
#' Thinking in a Hausman test framework --- with the within-between model as
#' described here --- you should expect the within and between
#' coefficients to be the same if a random effects model were appropriate.
#'
#' The contextual model is very similar (use argument `"contextual"`). In
#' some situations, this will be more intuitive to interpret. Empirically,
#' the only difference compared to the within-between specification is that
#' the contextual model does not subtract the individual-level means from the
#' wave-level measures. This also changes the interpretation of the
#' between-subject coefficients: In the contextual model, they are the
#' *difference* between the within and between effects. If there's no
#' difference between within and between effects, then, the coefficients will
#' be 0.
#'
#' To fit a random effects model, use either `"between"` or `"random"`. This
#' involves no de-meaning and no individual-level means whatsoever.
#'
#' To fit a fixed effects model, use either `"within"` or `"fixed"`. Any
#' between-subjects terms in the formula will be ignored. The time-varying
#' variables will be de-meaned, but the individual-level mean is not included
#' in the model.
#'
#' @examples
#' data("WageData")
#' wages <- panel_data(WageData, id = id, wave = t)
#' model <- wbm(lwage ~ lag(union) + wks | blk + fem | blk * lag(union),
#' data = wages)
#' summary(model)
#'
#' @references
#'
#' Allison, P. (2009). *Fixed effects regression models*.
#' Thousand Oaks, CA: SAGE Publications.
#' https://doi.org/10.4135/9781412993869.d33
#'
#' Bell, A., & Jones, K. (2015). Explaining fixed effects: Random effects
#' modeling of time-series cross-sectional and panel data.
#' *Political Science Research and Methods*, *3*, 133–153.
#' https://doi.org/10.1017/psrm.2014.7
#'
#' Curran, P. J., & Bauer, D. J. (2011). The disaggregation of within-person
#' and between-person effects in longitudinal models of change.
#' *Annual Review of Psychology*, *62*, 583–619.
#' https://doi.org/10.1146/annurev.psych.093008.100356
#'
#' Giesselmann, M., & Schmidt-Catran, A. (2018). Interactions in fixed effects
#' regression models (Discussion Papers of DIW Berlin No. 1748).
#' *DIW Berlin, German Institute for Economic Research*.
#' Retrieved from https://ideas.repec.org/p/diw/diwwpp/dp1748.html
#'
#' Schunck, R., & Perales, F. (2017). Within- and between-cluster effects in
#' generalized linear mixed models: A discussion of approaches and the
#' `xthybrid` command. *The Stata Journal*, *17*, 89–115.
#' https://doi.org/10.1177/1536867X1701700106
#'
#' @export
#' @import jtools
#' @rdname wbm
#' @seealso [wbm_stan()] for a Bayesian estimation option.
#' @importFrom stats as.formula gaussian terms confint drop.terms reformulate
#' @importFrom stats model.matrix
wbm <- function(formula, data, id = NULL, wave = NULL,
model = "w-b", detrend = FALSE, use.wave = FALSE,
wave.factor = FALSE, min.waves = 2, family = gaussian,
balance.correction = FALSE, dt.random = TRUE, dt.order = 1,
pR2 = TRUE, pvals = TRUE, t.df = "Satterthwaite",
weights = NULL, offset = NULL,
interaction.style = c("double-demean", "demean", "raw"),
scale = FALSE, scale.response = FALSE, n.sd = 1,
dt_random = dt.random, dt_order = dt.order,
balance_correction = balance.correction, ...) {
the_call <- match.call()
the_call[[1]] <- substitute(wbm)
the_env <- parent.frame()
if (any(c(detrend, balance_correction))) {
if (!requireNamespace("tidyr") | !requireNamespace("purrr")) {
stop_wrap("To use the 'detrend' or 'balance_correction' arguments, you
must have the 'tidyr' and 'purrr' packages installed.")
}
}
# Deal with deprecated arguments
if (dt_random != dt.random) dt.random <- dt_random
if (dt_order != dt.order) dt.order <- dt_order
if (balance_correction != balance.correction) {
balance.correction <- balance_correction
}
formula <- Formula::Formula(formula)
interaction.style <- match.arg(interaction.style,
c("double-demean", "demean", "raw"))
# Send to helper function for data prep
prepped <- wb_prepare_data(formula = formula, data = data, id = id,
wave = wave, model = model, detrend = detrend,
use.wave = use.wave, wave.factor = wave.factor,
min.waves = min.waves,
balance_correction = balance.correction,
dt_random = dt.random, dt_order = dt.order,
weights = !! enquo(weights),
offset = !! enquo(offset),
demean.ints = interaction.style == "double-demean",
old.ints = interaction.style == "demean")
e <- prepped$e
pf <- prepped$pf
data <- e$data
wave <- prepped$wave
id <- prepped$id
dv <- prepped$dv
weights <- prepped$weights
offset <- prepped$offset
if (scale == TRUE) {
vars <- names(data)[names(data) %nin% c(wave, id)]
if (scale.response == FALSE) {vars <- vars[vars != dv]}
data <-
jtools::gscale(data, vars = vars, n.sd = n.sd, binary.inputs = "0/1")
}
if (wave.factor == TRUE) {
data[[wave]] <- as.factor(data[[wave]])
}
# Use helper function to generate formula to pass to lme4
fin_formula <- prepare_lme4_formula(e$fin_formula, pf, data, use.wave, wave,
id, c(e$int_means, e$within_ints),
e$cross_ints, dv)
if (!is.null(offset)) {
offset[!is.finite(offset)] <- NA
}
# Conditionally choose lme4 function based on family argument
if (as.character(substitute(family))[1] == "gaussian") {
fit <- lme4::lmer(fin_formula, data = data, weights = weights,
offset = offset, ...)
} else if (as.character(substitute(family))[1] == "negbinomial") {
fit <- lme4::glmer.nb(fin_formula, data = data, weights = weights,
offset = offset, ...)
} else {
fit <- lme4::glmer(fin_formula, data = data, family = family,
weights = weights, offset = offset, ...)
}
# Getting jtools summary info so it isn't re-run every time summary()
# is called
dont_use_satterthwaite <-
as.character(substitute(family))[1] == "gaussian" &&
(lme4::isREML(fit) == FALSE | check_lmerModTest(fit))
if (dont_use_satterthwaite == TRUE & t.df == "Satterthwaite") {
t.df <- "residual"
sfit <- fit
} else {
if (lme4::isLMM(fit) & t.df == "Satterthwaite") {
t.df <- NULL
sfit <- lmerTest::as_lmerModLmerTest(fit)
} else sfit <- fit
}
t0 <- Sys.time()
j <- suppressMessages(
jtools::j_summ(sfit, pvals = pvals, r.squared = pR2, t.df = t.df))
t1 <- Sys.time()
if (t1 - t0 > 5) {
msg_wrap("If wbm is taking too long to run, you can try setting
pvals = FALSE.")
}
# Need to take vars out of call so I can update the summ object outside this
# environment
jcall <- getCall(j)
jcall$pvals <- substitute(pvals)
jcall$r.squared <- substitute(pR2)
jcall$t.df <- substitute(t.df)
attr(j, "call") <- jcall
# check if pseudo-R2 calculation failed
if (is.na(attr(j, "rsqs")[1]) | length(attr(j, "rsqs")) == 0) pR2 <- FALSE
ints <- e$cross_ints
j2 <- attributes(j)
# Drop redundant model from the summ object
# j$model <- NULL
# class(j) <- c("summ.wbm", class(j))
merMod_call <- getCall(fit)
terms <- attr(fit@frame, "terms")
if (lme4::isLMM(fit)) {
out <- as(object = fit, Class = "wblm")
} else {
out <- as(object = fit, Class = "wbglm")
}
out@orig_data <- prepped$orig_data
if (wave %nin% all.vars(fin_formula)) {
data <- data[names(data) %nin% wave]
}
out@frame <- as.data.frame(data)
attr(out@frame, "terms") <- terms
attr(out@frame, "formula") <- formula(fit)
out@call_info <- list(dv = dv, id = id, wave = wave,
num_distinct = prepped$num_distinct,
varying = c(pf$varying, e$within_ints), constants = pf$constants,
meanvars = pf$meanvars, model = model,
max_wave = prepped$maxwave, min_wave = prepped$minwave,
ints = ints, pvals = pvals, pR2 = pR2, env = the_env,
mf_form = prepped$mf_form,
use.wave = use.wave, wave.factor = wave.factor,
detrend = detrend, dt_order = dt_order,
dt_random = dt_random, balance_correction = balance_correction,
pf = pf, merMod_call = merMod_call,
interaction.style = interaction.style)
out@call <- the_call
out@summ <- j
out@summ_atts <- j2
return(out)
}
#' @export
#' @importFrom stats family
#' @importFrom crayon bold italic
summary.wbm <- function(object, ...) {
dots <- list(...)
if ("digits" %in% names(dots)) {
digits <- dots$digits
} else {
digits <- getOption("jtools-digits", 2)
}
x <- object
x2 <- x@call_info
j <- x@summ
j2 <- x@summ_atts
entity_icc <- j$gvars[j$gvars[,"Group"] == x2$id,]
entity_icc <- as.numeric(entity_icc["ICC"])
entity_icc <- round(entity_icc, digits)
mod_info <- paste0(bold("MODEL INFO:\n"),
italic("Entities: "), lme4::ngrps(x), "\n",
italic("Time periods: "), paste0(x2$min_wave, "-",
x2$max_wave), "\n",
italic("Dependent variable: "), x2$dv, "\n")
if (family(x)$family == "gaussian") {
mod_info <- paste0(mod_info, italic("Model type:"), " Linear mixed effects\n")
} else {
mod_info <- paste(mod_info, italic("Model family: "), family(x)$family,
", ", italic("Link: "), family(x)$link, "\n", sep = "")
}
# Name the model
est_name <- x2$model
if (x2$model == "w-b") {est_name <- "within-between"}
if (est_name == "random") {est_name <- "between"}
if (est_name == "fixed") {est_name <- "within"}
est_info <- paste(italic("Specification: "), est_name, "\n\n", sep = "")
mod_fit <- paste(bold("MODEL FIT:"),
"\n", italic("AIC = "), round(j2$aic, j2$digits),
", ", italic("BIC = "), round(j2$bic, j2$digits), "\n", sep = "")
if (x2$pR2 == TRUE) {
mod_fit <- paste0(mod_fit, italic("Pseudo-R\u00B2 (fixed effects) = "),
round(j2$rsqs$Marginal, j2$digits),
"\n", italic("Pseudo-R\u00B2 (total) = "),
round(j2$rsqs$Conditional, j2$digits),
italic("\nEntity ICC = "), entity_icc, "\n\n")
} else {
mod_fit <- paste(mod_fit, italic("Entity ICC = "), entity_icc, "\n\n")
}
# For glance method
mod_info_list <- list(min_wave = x2$min_wave, max_wave = x2$max_wave,
N = lme4::ngrps(x)[x2$id], aic = j2$aic, bic = j2$bic,
pR2_fe = if (x2$pR2) j2$rsqs$Marginal else NULL,
pR2_total = if (x2$pR2)j2$rsqs$Conditional else NULL,
model = est_name)
coefs <- j$coeftable
rownames(coefs) <- gsub("`", "", rownames(coefs), fixed = TRUE)
if (!is.null(x2$ints)) {
x2$ints <- gsub("`", "", x2$ints, fixed = TRUE)
}
varying <- x2$varying
if (est_name == "within") {
varying <- c("(Intercept)", varying, x2$ints)
if (x2$use.wave == TRUE) {varying <- c(varying, x2$wave)}
x2$ints <- NULL
}
coefs <- as.data.frame(coefs, make.names = FALSE)
rows <- rownames(coefs)
if (length(varying) > 0 & est_name != "between") {
within_table <- coefs[rownames(coefs) %in% varying,]
coefs <- coefs[rownames(coefs) %nin% varying,]
rows <- rows %not% varying
} else {
within_table <- NULL
}
if (length(x2$ints) > 0) {
ints_table <- coefs[rownames(coefs) %in% x2$ints,]
coefs <- coefs[rownames(coefs) %nin% x2$ints,]
rows <- rows %not% x2$ints
} else {
ints_table <- NULL
}
if (est_name != "within") {
between_table <- coefs
} else {
between_table <- NULL
}
if (lme4::isLMM(x) == TRUE & j2$pvals == TRUE) {
if (j2$p_calc == "k-r") {
df_msg <- italic(str_wrap("p values calculated using Kenward-Roger
standard errors and d.f."), "\n")
} else if (j2$p_calc == "s") {
df_msg <- italic("p values calculated using Satterthwaite d.f.\n")
} else {
df_msg <- italic(
paste("p values calculated using df =", round(j2$df, digits), "\n")
)
}
} else {
df_msg <- NULL
}
ranef_table <- as.data.frame(j$rcoeftable)
ranef_table[, 3] <- as.numeric(as.character(ranef_table[, 3]))
out <- list(ranef_table = ranef_table,
within_table = within_table, between_table = between_table,
entity_icc = entity_icc, mod_info = mod_info, mod_fit = mod_fit,
model = x2$model, est_name = est_name,
est_info = est_info, ints_table = ints_table, df_msg = df_msg,
digits = digits, mod_info_list = mod_info_list)
class(out) <- "summary.wbm"
return(out)
}
#' @export
print.summary.wbm <- function(x, ...) {
cat(x$mod_info)
cat(x$est_info)
cat(x$mod_fit)
if (x$est_name != "between" & !is.null(x$within_table) &&
nrow(x$within_table) > 0) {
if (x$est_name != "within") {
cat(bold("WITHIN EFFECTS:\n"))
}
print(md_table(as.data.frame(x$within_table), digits = x$digits,
sig.digits = FALSE,
format = getOption("panelr.table.format", "multiline")))
cat("\n")
}
if (x$est_name != "contextual" & !is.null(x$between_table) &&
nrow(x$between_table) > 0) {
cat(bold("BETWEEN EFFECTS:\n"))
print(md_table(x$between_table, digits = x$digits, sig.digits = FALSE,
format = getOption("panelr.table.format", "multiline")))
cat("\n")
} else if (x$est_name == "contextual" & !is.null(x$between_table) &&
nrow(x$between_table) > 0) {
cat(bold("CONTEXTUAL EFFECTS:\n"))
print(md_table(x$between_table, digits = x$digits, sig.digits = FALSE,
format = getOption("panelr.table.format", "multiline")))
cat("\n")
}
if (!is.null(x$ints_table) && nrow(x$ints_table) > 0) {
cat(bold("CROSS-LEVEL INTERACTIONS:\n"))
print(md_table(x$ints_table, digits = x$digits, sig.digits = FALSE,
format = getOption("panelr.table.format", "multiline")))
cat("\n")
}
if (!is.null(x$df_msg)) {
cat(x$df_msg, "\n")
}
cat(bold("RANDOM EFFECTS:\n"))
print(md_table(x$ranef_table, digits = x$digits, row.names = FALSE,
align = "c",
format = getOption("panelr.table.format", "multiline")))
}
#' @export
print.wbm <- function(x, ...) {
print(summary(x))
}
#' @title Tidy methods for `wbm` models
#' @description `panelr` provides methods to access `wbm` data in a tidy format
#' @rdname wbm_tidiers
#' @inheritParams broom.mixed::lme4_tidiers
#' @param effects A character vector including one or more of "fixed"
#' (fixed-effect parameters); "ran_pars" (variances and covariances or
#' standard deviations and correlations of random effect terms);
#' "ran_vals" (conditional modes/BLUPs/latent variable estimates); or
#' "ran_coefs" (predicted parameter values for each group, as returned by
#' `coef.merMod`.
#' @examples
#' data("WageData")
#' wages <- panel_data(WageData, id = id, wave = t)
#' model <- wbm(lwage ~ lag(union) + wks, data = wages)
#' if (requireNamespace("broom.mixed")) {
#' broom.mixed::tidy(model)
#' }
#' @rawNamespace
#' if (getRversion() >= "3.6.0") {
#' S3method(generics::tidy, wbm)
#' } else {
#' export(tidy.wbm)
#' }
tidy.wbm <- function(x, conf.int = FALSE, conf.level = .95,
effects = c("fixed", "ran_pars"), conf.method = "Wald",
ran_prefix = NULL, ...) {
if (!requireNamespace("broom.mixed")) {
stop_wrap("You must have the broom.mixed package to use tidy methods.")
}
# Going to get the organized values from the summary function
sum <- summary(x)
# Getting their rownames before they are dropped by dplyr
terms <- c(rownames(sum$within_table), rownames(sum$between_table),
rownames(sum$ints_table))
# Binding these tables together but saving their category to the .id variable
params <- dplyr::bind_rows(within = sum$within_table,
between = sum$between_table,
interactions = sum$ints_table, .id = "group")
# Adding those rownames as a column
params$term <- terms
# Renaming the other columns to fit the tidy model
switchv <- Vectorize(function(a) {
switch(a,
"Est." = "estimate",
"t val." = "statistic",
"z val." = "statistic",
"S.E." = "std.error",
"p" = "p.value",
a)
}, "a")
names(params) <- switchv(names(params))
# Getting confidence intervals if requested
if (conf.int == TRUE) {
ints <- as.data.frame(confint(x, level = conf.level, method = conf.method))
# Renaming the columns to fit the tidy model
names(ints) <- c("conf.low", "conf.high")
# Renaming the terms to remove the backticks to match the params d.f.
ints$term <- stringr::str_remove_all(rownames(ints), "`")
# Put things together
params <- dplyr::left_join(params, ints, by = "term")
}
# Get the random effects if requested
if ("ran_pars" %in% effects) {
ran_pars <- broom.mixed::tidy(as(x, switch(class(x), "wblm" = "lmerMod",
"wbglm" = "glmerMod")),
effects = "ran_pars", conf.method = conf.method,
conf.level = conf.level, ran_prefix = ran_prefix,
...)
params <- dplyr::bind_rows(params, ran_pars)
}
return(tibble::as_tibble( # Return a tibble
# Only return the relevant columns
params %just% c("term", "estimate", "statistic", "std.error",
"conf.low", "conf.high", "p.value", "group")
))
}
#' @rdname wbm_tidiers
#' @inheritParams broom.mixed::lme4_tidiers
#' @rawNamespace
#' if (getRversion() >= "3.6.0") {
#' S3method(generics::glance, wbm)
#' } else {
#' export(glance.wbm)
#' }
glance.wbm <- function(x, ...) {
sum <- summary(x)
mod_info_list <- sum$mod_info_list
mod_info_list[sapply(mod_info_list, is.null)] <- NA
return(tibble::as_tibble(mod_info_list))
}
#' @rawNamespace
#' if (getRversion() >= "3.6.0") {
#' S3method(jtools::summ, wbm)
#' } else {
#' export(summ.wbm)
#' }
summ.wbm <- function(model, ...) {
out <- update_summ(model@summ, ...)
class(out) <- c("summ.wbm", class(out))
out$wbm <- model
out
}
#' @rdname wbm_tidiers
#' @inheritParams broom.mixed::lme4_tidiers
#' @rawNamespace
#' if (getRversion() >= "3.6.0") {
#' S3method(generics::glance, summ.wbm)
#' } else {
#' export(glance.summ.wbm)
#' }
glance.summ.wbm <- function(x, ...) {
glance.wbm(x$wbm)
}
#' @rdname wbm_tidiers
#' @inheritParams broom.mixed::lme4_tidiers
#' @rawNamespace
#' if (getRversion() >= "3.6.0") {
#' S3method(generics::tidy, summ.wbm)
#' } else {
#' export(tidy.summ.wbm)
#' }
tidy.summ.wbm <- function(x, ...) {
class(x) <- class(x) %not% "summ.wbm"
generics::tidy(x, ...)
}
#' @importFrom utils getFromNamespace
update_summ <- function(summ, call.env, ...) {
call <- getCall(summ)
# Now get the argument names for that version of summ
summ_formals <- formals(getFromNamespace(class(summ), "jtools"))
extras <- as.list(match.call())
indices <- which(names(extras) %in% names(summ_formals))
extras <- extras[indices]
existing <- !is.na(match(names(extras), names(call)))
for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
if (any(!existing)) {
call <- c(as.list(call), extras[!existing])
call <- as.call(call)
}
env <- attr(summ, "env")
call$model <- summ$model
eval(call, env, parent.frame())
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.