# R/generate_design_lhs.R In paradox: Define and Work with Parameter Spaces for Complex Algorithms

#### Documented in generate_design_lhs

```#' @title Generate a Space-Filling LHS Design
#'
#' @description
#' Generate a space-filling design using Latin hypercube sampling. Dependent
#' parameters whose constraints are unsatisfied generate `NA` entries in
#' their respective columns.
#'
#' @param param_set ([`ParamSet`]).
#' @param n (`integer(1)`) \cr
#'   Number of points to sample.
#' @param lhs_fun (`function(n, k)`)\cr
#'   Function to use to generate a LHS sample, with n samples and k values per param.
#'   LHS functions are implemented in package \pkg{lhs}, default is to use [lhs::maximinLHS()].
#' @return [`Design`].
#'
#' @family generate_design
#' @export
#' @examples
#' pset = ps(
#'   ratio = p_dbl(lower = 0, upper = 1),
#'   letters = p_fct(levels = letters[1:3])
#' )
#'
#' if (requireNamespace("lhs", quietly = TRUE)) {
#'   generate_design_lhs(pset, 10)
#' }
generate_design_lhs = function(param_set, n, lhs_fun = NULL) {
if (is.null(lhs_fun)) {
require_namespaces("lhs")
lhs_fun = lhs::maximinLHS
}
assert_param_set(param_set, no_untyped = TRUE)
n = assert_count(n, coerce = TRUE)
assert_function(lhs_fun, args = c("n", "k"))

ids = param_set\$ids()
if (n == 0) {
d = matrix(numeric(0), nrow = 0, ncol = param_set\$length)
} else {
d = lhs_fun(n, k = param_set\$length)
}
colnames(d) = ids
d = param_set\$qunif(d)
Design\$new(param_set, d, remove_dupl = FALSE) # user wants n-points, dont remove
}
```