View source: R/methods_kmeans.R
model_parameters.dbscan | R Documentation |
Format cluster models obtained for example by kmeans()
.
## S3 method for class 'dbscan' model_parameters(model, data = NULL, clusters = NULL, ...) ## S3 method for class 'hclust' model_parameters(model, data = NULL, clusters = NULL, ...) ## S3 method for class 'pvclust' model_parameters(model, data = NULL, clusters = NULL, ci = 0.95, ...) ## S3 method for class 'kmeans' model_parameters(model, ...) ## S3 method for class 'hkmeans' model_parameters(model, ...) ## S3 method for class 'Mclust' model_parameters(model, data = NULL, clusters = NULL, ...) ## S3 method for class 'pam' model_parameters(model, data = NULL, clusters = NULL, ...)
model |
Cluster model. |
data |
A data.frame. |
clusters |
A vector with clusters assignments (must be same length as rows in data). |
... |
Arguments passed to or from other methods. |
ci |
Confidence Interval (CI) level. Default to |
# DBSCAN --------------------------- if (require("dbscan", quietly = TRUE)) { model <- dbscan::dbscan(iris[1:4], eps = 1.45, minPts = 10) rez <- model_parameters(model, iris[1:4]) rez # Get clusters predict(rez) # Clusters centers in long form attributes(rez)$means # Between and Total Sum of Squares attributes(rez)$Sum_Squares_Total attributes(rez)$Sum_Squares_Between # HDBSCAN model <- dbscan::hdbscan(iris[1:4], minPts = 10) model_parameters(model, iris[1:4]) } # # Hierarchical clustering (hclust) --------------------------- data <- iris[1:4] model <- hclust(dist(data)) clusters <- cutree(model, 3) rez <- model_parameters(model, data, clusters) rez # Get clusters predict(rez) # Clusters centers in long form attributes(rez)$means # Between and Total Sum of Squares attributes(rez)$Total_Sum_Squares attributes(rez)$Between_Sum_Squares # # pvclust (finds "significant" clusters) --------------------------- if (require("pvclust", quietly = TRUE)) { data <- iris[1:4] # NOTE: pvclust works on transposed data model <- pvclust::pvclust(datawizard::data_transpose(data), method.dist = "euclidean", nboot = 50, quiet = TRUE ) rez <- model_parameters(model, data, ci = 0.90) rez # Get clusters predict(rez) # Clusters centers in long form attributes(rez)$means # Between and Total Sum of Squares attributes(rez)$Sum_Squares_Total attributes(rez)$Sum_Squares_Between } ## Not run: # # K-means ------------------------------- model <- kmeans(iris[1:4], centers = 3) rez <- model_parameters(model) rez # Get clusters predict(rez) # Clusters centers in long form attributes(rez)$means # Between and Total Sum of Squares attributes(rez)$Sum_Squares_Total attributes(rez)$Sum_Squares_Between ## End(Not run) ## Not run: # # Hierarchical K-means (factoextra::hkclust) ---------------------- if (require("factoextra", quietly = TRUE)) { data <- iris[1:4] model <- factoextra::hkmeans(data, k = 3) rez <- model_parameters(model) rez # Get clusters predict(rez) # Clusters centers in long form attributes(rez)$means # Between and Total Sum of Squares attributes(rez)$Sum_Squares_Total attributes(rez)$Sum_Squares_Between } ## End(Not run) if (require("mclust", quietly = TRUE)) { model <- mclust::Mclust(iris[1:4], verbose = FALSE) model_parameters(model) } ## Not run: # # K-Medoids (PAM and HPAM) ============== if (require("cluster", quietly = TRUE)) { model <- cluster::pam(iris[1:4], k = 3) model_parameters(model) } if (require("fpc", quietly = TRUE)) { model <- fpc::pamk(iris[1:4], criterion = "ch") model_parameters(model) } ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.