R/methods_hclust.R

Defines functions .model_parameters_pvclust_clusters model_parameters.pvclust model_parameters.hclust

Documented in model_parameters.hclust model_parameters.pvclust

#' @rdname model_parameters.kmeans
#' @inheritParams cluster_centers
#'
#' @examples
#' #
#' # Hierarchical clustering (hclust) ---------------------------
#' data <- iris[1:4]
#' model <- hclust(dist(data))
#' clusters <- cutree(model, 3)
#'
#' rez <- model_parameters(model, data, clusters)
#' rez
#'
#' # Get clusters
#' predict(rez)
#'
#' # Clusters centers in long form
#' attributes(rez)$means
#'
#' # Between and Total Sum of Squares
#' attributes(rez)$Total_Sum_Squares
#' attributes(rez)$Between_Sum_Squares
#' @export
model_parameters.hclust <- function(model, data = NULL, clusters = NULL, ...) {
  if (is.null(data)) {
    stop("This function requires the data used to compute the clustering to be provided via 'data' as it is not accessible from the clustering object itself.")
  }
  if (is.null(clusters)) {
    stop("This function requires a vector of clusters assignments of same length as data to be passed, as it is not contained in the clustering object itself.")
  }

  params <- cluster_centers(data, clusters, ...)

  # Long means
  means <- datawizard::reshape_longer(params,
    cols = 4:ncol(params),
    values_to = "Mean",
    names_to = "Variable"
  )

  attr(params, "variance") <- attributes(params)$variance
  attr(params, "Sum_Squares_Between") <- attributes(params)$Sum_Squares_Between
  attr(params, "Sum_Squares_Total") <- attributes(params)$Sum_Squares_Total
  attr(params, "means") <- means
  attr(params, "model") <- model
  attr(params, "scores") <- clusters
  attr(params, "type") <- "hclust"

  class(params) <- c("parameters_clusters", class(params))
  params
}




#' @inheritParams n_clusters
#' @rdname model_parameters.kmeans
#' @examples
#' \donttest{
#' #
#' # pvclust (finds "significant" clusters) ---------------------------
#' if (require("pvclust", quietly = TRUE)) {
#'   data <- iris[1:4]
#'   # NOTE: pvclust works on transposed data
#'   model <- pvclust::pvclust(datawizard::data_transpose(data),
#'     method.dist = "euclidean",
#'     nboot = 50,
#'     quiet = TRUE
#'   )
#'
#'   rez <- model_parameters(model, data, ci = 0.90)
#'   rez
#'
#'   # Get clusters
#'   predict(rez)
#'
#'   # Clusters centers in long form
#'   attributes(rez)$means
#'
#'   # Between and Total Sum of Squares
#'   attributes(rez)$Sum_Squares_Total
#'   attributes(rez)$Sum_Squares_Between
#' }
#' }
#' @export
model_parameters.pvclust <- function(model, data = NULL, clusters = NULL, ci = 0.95, ...) {
  if (is.null(data)) {
    stop("This function requires the data used to compute the clustering to be provided via 'data' as it is not accessible from the clustering object itself.")
  }

  if (is.null(clusters)) {
    clusters <- .model_parameters_pvclust_clusters(model, data, ci)$Cluster
  }

  params <- .cluster_centers_params(data, clusters, ...)

  attr(params, "model") <- model
  attr(params, "type") <- "pvclust"
  attr(params, "title") <- "Bootstrapped Hierarchical Clustering (PVCLUST)"

  params
}



# Utils -------------------------------------------------------------------


#' @keywords internal
.model_parameters_pvclust_clusters <- function(model, data, ci = 0.95) {
  insight::check_if_installed("pvclust")
  rez <- pvclust::pvpick(model, alpha = ci, pv = "si")

  # Assign clusters
  out <- data.frame()
  for (cluster in 1:length(rez$clusters)) {
    out <- rbind(out, data.frame(Cluster = cluster, Row = rez$clusters[[cluster]], stringsAsFactors = FALSE), make.row.names = FALSE, stringsAsFactors = FALSE)
  }

  # Add points not in significant clusters
  remaining_rows <- row.names(data)[!row.names(data) %in% out$Row]
  if (length(remaining_rows) > 0) out <- rbind(out, data.frame(Cluster = 0, Row = remaining_rows, stringsAsFactors = FALSE), make.row.names = FALSE, stringsAsFactors = FALSE)

  # Reorder according to original order of rows
  out <- out[order(match(out$Row, row.names(data))), ]
  row.names(out) <- NULL
  out
}

Try the parameters package in your browser

Any scripts or data that you put into this service are public.

parameters documentation built on Jan. 12, 2022, 5:07 p.m.