Nothing
#| child: aaa.Rmd #| include: false
r descr_models("decision_tree", "C5.0")
#| label: C5.0-param-info #| echo: false defaults <- tibble::tibble(parsnip = c("min_n"), default = c("2L")) param <- decision_tree() |> set_engine("C5.0") |> set_mode("classification") |> make_parameter_list(defaults)
This model has r nrow(param)
tuning parameters:
#| label: C5.0-param-list #| echo: false #| results: asis param$item
#| label: C5.0-cls decision_tree(min_n = integer()) |> set_engine("C5.0") |> set_mode("classification") |> translate()
[C5.0_train()] is a wrapper around [C50::C5.0()] that makes it easier to run this model.
#| child: template-tree-split-factors.Rmd
#| child: template-uses-case-weights.Rmd
#| child: template-butcher.Rmd
The "Fitting and Predicting with parsnip" article contains examples for decision_tree()
with the "C5.0"
engine.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.