#| child: aaa.Rmd
#| include: false

r descr_models("mlp", "keras")

Tuning Parameters

#| label: keras-param-info
#| echo: false
defaults <- 
  tibble::tibble(parsnip = c("hidden_units", "penalty", "dropout", "epochs", "activation"),
                 default = c("5L", "0.0", "0.0", "20L", "'softmax'"))

param <-
  mlp() |> 
  set_engine("keras") |> 
  make_parameter_list(defaults)

This model has r nrow(param) tuning parameters:

#| label: keras-param-list
#| echo: false
#| results: asis
param$item

Translation from parsnip to the original package (regression)

#| label: keras-reg
mlp(
  hidden_units = integer(1),
  penalty = double(1),
  dropout = double(1),
  epochs = integer(1),
  activation = character(1)
) |>  
  set_engine("keras") |> 
  set_mode("regression") |> 
  translate()

Translation from parsnip to the original package (classification)

#| label: keras-cls
mlp(
  hidden_units = integer(1),
  penalty = double(1),
  dropout = double(1),
  epochs = integer(1),
  activation = character(1)
) |> 
  set_engine("keras") |> 
  set_mode("classification") |> 
  translate()

Preprocessing requirements

#| child: template-makes-dummies.Rmd
#| child: template-same-scale.Rmd

Case weights

#| child: template-no-case-weights.Rmd

Saving fitted model objects

#| child: template-bundle.Rmd

Examples

The "Fitting and Predicting with parsnip" article contains examples for mlp() with the "keras" engine.

References



Try the parsnip package in your browser

Any scripts or data that you put into this service are public.

parsnip documentation built on June 8, 2025, 12:10 p.m.